Literature Review for IFT-7020 Research Project

Amirhossein Esmaeilpour
Ph.D. Student in Administration Sciences - Operation and Decision Systems
Supervisor: Dr. Michael Morin
Submit to Prof. Claude-Guy Quimper

1 Abstract

The efficacy of search and rescue missions is crucial for saving lives and minimizing losses during sea-
related emergencies. In this research, we seek to improve the current limitation of the "Optimizer”
module of Search Planner- the Canadian Coast Guard’s decision support system that assists them
in maritime search and rescue. In this research, we design a model to prevent the overlap of search
and rescue units by integrating constraint programming with black-box optimization. Our model
ensures that search areas for different units are non-overlapping, thereby improving operational
safety and efficiency. The final results show the effectiveness of our model in generating feasible
and optimized search rectangles within tight time constraints.

2 Introduction

The efficacy of search and rescue (SAR) missions is crucial for saving lives and minimizing losses in
maritime emergencies. In the past, initial advancements in SAR operations depended significantly
on manual techniques. In Canada, the Canadian Search Area Definition (CSAD) method, devel-
oped based on crash site location data from 1981-1986, was the primary approach used for planning
search operations. However, research has shown that manual methods for SAR have significant
limitations. They often fail to account for search variables like sweep width, sensor capabilities,
and environmental conditions that affect search effectiveness.

In 2005, Prof. Abi-Zeid and Prof. Frost [1] presented a product called "SARPla”, a geographic
decision-support system designed to assist the Canadian Coast Guard to help them in their search
mission to find the missing aircraft. The system was developed to address limitations in existing
manual methods, particularly the C'SAD approach. SARPlan optimally plans the search mission to
maximize the mission’s probability of success. They used Search Theory, Gradient Search methods,
and Constraint Satisfaction programming in SARPlan. In their research, the search object was the
missing crashed aircraft. Therefore, they were working on a stationary search object. To explain
the contribution of this paper, we need to briefly explain a few concepts in Search Theory.

In search theory, the ultimate goal is to devise a search plan that maximizes the chances of
finding the target object within the minimum amount of time. The Probability of Success (PO.S)
serves as an important indicator. For a static search object, POS is the result of combining the
Probability of Containment and the Probability of Detection, which is depicted in Equationl. The
likelihood that the search item is enclosed within a specific area is called Probability of Containment
(POC). Effort has units of length or time on the scene, meaning a Search and Rescue Unit can
be on the scene for how long or it can traverse how far. The probability of Detection (POD) is
the probability of detecting the search object as a function of effort expended in the given area.
The sweep width indicates the level of visibility of the search object by the sensors in the current
environmental conditions during the search.

POS = POD(Ef fort) x POC (1)

Designing search plans that incrementally optimize POS ensures efficient resource allocation,
significantly enhancing the likelihood of a successful search.

SARPlan’s key innovation is its optimal effort allocation capability, which helps maximize
the POS by optimally allocating search resources based on multiple variables including POC,
POD, sweep width considerations, and environmental factors. The system integrates Geographic

Information System (GIS)capabilities allowing users to define search areas using digital maps,
create theme grids for various factors, and automatically populate grid cells with relevant data.

SARPIlan enables users to outline the possibility area. The primary data structure in SARPlan
for data representation is the fundamental grid, which consists of equally sized square cells created
over the possibility area by SARPlan. To optimally allocate available effort f, they formulate the
below optimization problem:

Maximize POS =Y POC(j)POD(j, 2(j)) (2)
jeJ
subject to f = Z 2(5) (3)

POC(j) represents the likelihood of the search object being in cell j of the area J divided into
cells, z(j) denotes the search effort in cell j, and POD(j,2(j)) stands for the detection function.
If the search mission at time t-1 was unsuccessful, the input POC grid will be updated with the
below penalty function:

POC(j) = POC,—1(j)[1 — POD.(j)] (4)

Performance testing showed that SARPlan consistently outperformed the traditional Canadian
Search Area Definition (C'SAD) method, demonstrating a 30-50% improvement in POS. The sys-
tem showed particularly strong performance during crucial initial search hours and superior results
across various conditions including poor search conditions and varying sweep width scenarios. This
provides different benefits compared to manual techniques.

SARPIlan runs on a Windows platform using client-server architecture, implemented in C++
with an ORACLE 8i database. It uses MAPOBJECTS 2.0 for geographic capabilities and incor-
porates various numerical optimization algorithms.

We can conclude that SARPlan provides significant improvements in search efficiency, leading
to more lives saved, reduced SAR costs, and decreased risk to searchers through earlier detection
and more efficient resource utilization.

This paper was the start of the idea of the SAR Optimizer and includes different concepts that
led to developing the SAR Optimizer for the Canadian Coast Guard which we will cover in the
next paper.

In 2019, Prof. Abi-Zeid, Dr. Morin, and their colleagues [2]| introduced Search Planner- An
artifact intended to suggest the optimal search plans of a search operation, specifically to determine
the most effective combination of search rectangles. Search Planner was developed as a decision
support system for missing persons in the maritime for the Canadian Coast Guard and they have
been using it until now. Their search objects are life rafts or missing persons in the maritime
therefore the search objects are moving. In each SAR mission, there are different steps to take
to prepare the information we need to find the best Search Area, Start Location, and Movement
pattern to search. Here are the steps that will be done when a search and rescue case opens before
Search Planner:

i SMC (SAR Mission Coordinators) Planning a Search Mission by creating a SAR Case in-
cluding all the information that they have, like the available search units, last known location
of Search Objects, possible sightings, etc.

ii In the first phase, it produces a Probability Distribution for the Search Objects by randomly
seeding the space and also taking into account the particles’ last known location. Most
programs use a Mont-Carlo-based stochastic drift Simulation in this regard.

iii Based on their drift model, which contains information on surface currents and winds, the
particles will move in time and space by the simulation.

iv The temporal arrangement of particle positions within each set serves as a probable trajectory
for a sought-after object [2, 4]. The Simulation output contains the particle’s position in each
time step and will be the input to the Search Planner.

v At this step, the SMC has the option to either generate a search operation manually
and submit it to the Search Planner for assessing its Probability of Success, or

it can ask the Search Planner to propose a search operation and, consequently, activate the
Optimizer module in the process [2].

2.1 Search Planner

Search Planner consists of three modules: "Simulator", "Evaluator", and "Optimizer". Here are
the steps in the Search Planner:

1. Input parameters: Number of search units (U), Drift File

2. For each search unit w in 1...U:

A Construct a Convex Hull based on its on-scene time.

B Create a Minimum Spanning Rectangle around the Convex Hull (Region of Interest or
ROI).

C Adjust the ROI by shrinking, enlarging, or shifting its center, depending on constraints,
to generate a set of feasible Search Rectangles (SR(u)).

3. Treat SR(u) as a Candidate Search operation.

4. Simulate the search units into those rectangles and evaluate to find the POS for the search
operation.

5. Compare the result with the highest POS so far and update the best POS if necessary.

The Search Planner strives to maximize POS by positioning the search units within rectangles
while adhering to specified constraints. These rectangles define the paths, which are then utilized to
compute POS. The optimization problem is described by the variables that define the rectangles,
including their center (two variables), length, width, and orientation (#). However, these five
variables are insufficient to fully specify the search path. The induced path comprises parallel
segments known as search legs, linked by perpendicular segments referred to as cross legs, all of
which are of equal length. In Figure 1 you can see an example of a Search Operation designed by
the Search Planner for 2 search units in the maritime. The dotted rectangle is the ROI and the
brown vector shows the mass center of the drift instance "D1”. The red and Green rectangles are
the search rectangles generated by SAR Optimizer that overlap each other.

The evolution of SAR decision support systems is demonstrated through these two papers,
showing a progression from stationary to dynamic search objects. SARPlan represented a pio-
neering effort focused on stationary targets (crashed aircraft), introducing the concepts of optimal
effort allocation and GIS integration to improve upon the manual CSAD method. The 2019
SAR Optimizer builds upon these foundational concepts but makes a significant leap forward by
addressing moving objects (life rafts, persons) in maritime environments, and by its modular ar-
chitecture (Simulator, Evaluator, and Optimizer) introducing innovations such as simulation-based
evaluation and dynamic search rectangle optimization.

In our optimization project, we plan to manually generate an optimal search rectangle for a
search unit and submit it to the Search Planner to assess its Probability of Success. Therefore, we
only use SAR Optimizer to evaluate our plan.

Black-box optimization (BBO) contains optimization problems where the objective function
and constraints can only be evaluated through external processes - whether through computer
simulations, existing software systems, or physical experiments. In these cases, we don’t have
direct access to the mathematical form of these functions; instead, we can only observe their
outputs for given inputs [3]. The BBO problems can be structured as follows:

min f(z.y) (5)
subject to:

where € R™ are the independent variables, y € R? are the dependent variables, f(x,y) is the
objective function, and g(x,y) denotes the constraints [3].

Figure 1: An example Search Operation for 2 search units on Instance D1 before using our proposed
method

"Hexaly” Solver, previously called "LocalSolver” [5], is a global optimization solver. It combines
the heuristic and exact operational research methods and allows to modelling of different opti-
mization problems like combinatorial, mixed, and continuous and solves them on large instances.
This solver also supports the Black-Box optimization. The black-box optimization method used
in the hexaly solver is based on Gutmann’s radial basis function substitution method. It uses
an RBF (Radial Basis Function) type surrogate to handle constraints in the objective function.
Each constraint is assigned a margin criterion to ensure feasible solutions. This criterion is up-
dated iteratively based on how feasible the previous evaluation point was. This approach improves
the likelihood of finding the optimal solution, even when it lies at the boundaries of the solution
space [6]. The hexaly solver proposed different implementation options in different programming
languages.

The concepts and definitions introduced in this section form the foundation for our next section.
In the following sections, we will formulate our problem and detail our proposed approach.

3 Problem Description

In a search and rescue operation, sometimes the available search and rescue unit can have the same
type. For example, in a maritime incident, SMC plans the search mission by checking the available
search and rescue units. Consider the only available search unit at that time was Helicopter and
Fixed-wing. The use of the same types of search and rescue units which in this case is aircraft, can
cause collision and safety problems when their search area is the same location. Currently, in the
search planner, there is no limitation for different search and rescue units’ on-scene positions and
in the "Optimizer” module, any possible ROI can be a feasible search rectangle for a search and
rescue unit. Therefore, it is possible to have two search rectangles partially or fully overlap each
other. This study addresses this problem by proposing a combination of constraint programming
and black-box optimization.
The Maritime Search and Rescue (MSAR) rectangle placement problem takes as input:

e A maximum search rectangle (Minimum Spanning Rectangle around the Convex Hull of

search objects) defined by four corners in Mercator projection coordinates:
(mazy, , mazy,), (Matyr, , Maxy,,), (mary,., , maxy,,), (mazy, , maxy,)

e Based on the SMC case and our resources, for each Search and Rescue Unit ¢ € {1, 2}:

— Minimum required search area A" in square meters

— Maximum allowed search area A7*** in square meters
A wvalid solution consists of two non-overlapping rectangles R; and Rs, where each rectangle:
e Must lie within the maximum search rectangle’s edges
e Must maintain rectangular shape (parallel to coordinate axes)

e Must have an area within its required bounds

Must not overlap with the other rectangle

4 Proposed Method

To address the mentioned problem, we combine constraint programming with black-box optimiza-
tion. We define a model that can generate two search rectangles which are limited to each search
and rescue unit’s resources and we used the Evaluator module of the Search Planner for the ob-
jective function. Therefore, we have an external black-box objective function.

In the first part, we read a SAR case file and got the important information that we needed like
"Total search effort", "Min and Max Track Spacing", "search unit On-scene time", and "Search
Speed" related to the case. Then we read the input drift file that contains the position of each
search unit in different time steps. The idea is to extract the data for the on-scene time of that
search unit, then do the same thing that the Search Planner do for each search unit (explained in
2.1) like create a context hull around the search objects and create a Maximum rectangle (ROI)
around that. Then the output of this section will be the input of our constraint programming.

Here is the mathematical model of our proposed constraint programming method:

Bounds derived from maximum rectangle:

mary = max(maxulw , MATyr, , MAT]yr, , maxuz)

maz, = max(ma. MAT ., , MAT Yy, , AT

Yy’ Y

ming = min(mazy, , Maxyr, , MATy, , MAT],)
min, = min(max., , Matyy,, , Maxy,, , mary,)
Variables:

e For each rectangle i € {1,2}:

— Upper left corner: (uliy, uliy) € [ming — b, max, + b
— Upper right corner: (ur;z, ury) € [ming — b, maz, + b
— Lower right corner: (Irig,lr;y,) € [ming — b, maz, + b]
— Lower left corner: (ll;z, ;) € [ming — b, max, + 0]

where b is a buffer parameter which we set 0 for that, and min,, mazx, are derived from
the maximum rectangle corners.

— Variable indicating the position of each search unit concerning another search unit (for
example z; can be 1 only if the position of the second search unit be at the left side of
the first search unit) 21, 22, 23, 24 € {0,1}

Constraints:

1. Rectangle shape (for each i € {1,2}):

uliy = Uiy
Uriy = i
ulsy = urgy
Uiy = lryy
uliy > Uy
Ulsy > Iryy
wliy < UTiy
wliy < Irig
ury — iy = ulyy — lryy

UT i — llzz = lTiz - uzm’

These constraints ensure that each rectangle maintains a valid rectangular shape with aligned
edges. They enforce that the upper-left corner is positioned above and to the left of the other
corners.

2. Area requirements (for each i € {1,2}):
wzdthz = |l’l“ia; — llml
ATt < width; x height; < AT 4t

where ¢ is a tolerance parameter which we set to 1. This constraint ensures that our generated
rectangles follow the area requirement of the input SAR case file.

3. Non-overlapping (exactly one must be true):

21 =1 = uliy + 0b > uroy (7)
2o =1 = ulay + 0b > urq, (8)
zg =1 = ll1y + 0b > ulay (9)
20 =1 = uliy + ob < llyy (10)

where 0b is an overlap buffer parameter that makes a little separation between the rectangle
and we set it to 10.

4. Enforce that exactly one condition is true:

Zl+22+23+2’4:1

These two conditions ensure the second search rectangle is either on the right, left, up, or
down of the first search rectangle and is not over the first one.

5. Symmetry breaking (for each i € {1,2}):

If max _y_ height > max_x_width :
height; > width;
Otherwise:
width; > height;

where max_y_height = max(|max,, —mazy, |, |max.,, —max.,|)
and maxr _x_width = max(|maxy,, — maxy, |, |maz;., —maxy,|)

This prevents symmetric solutions where rectangles can be rotated 90 degrees.

Objective Function:

Maximize POS = external _function(uliy, uliy, uriz, uriy, irig, riy, Uiz, Uiy,

(11)

uz2x7 uz2y7 UT 2z, UT2y, l'r2:cv l?"gy, ll2a:a ll2y)

The evaluator module of the Search Planner needs a valid SAR case file as input, and in that
case file, we have to insert the search rectangle’s coordinates and the search pattern for that
search rectangle. Therefore the external _function will generate the related search pattern for the
generated rectangles, create the modified SAR case, run the evaluator module of Search Planner
and return the value of POS to the objective function.

5 Experimental protocol

In this study, we used 4 instances of drift files. Each instance is a CSV file containing information
on the position of 5000 search objects simulated in different time steps of 5 minutes. In addition,
each instance includes a case file containing all the information about the search units, such as
the on-scene time, track spacing, speed, etc. We use this information in our model to generate a
suitable search rectangle for each search unit type. In our study, we used Hexaly solver because it
supports both Python and external functions. Therefore, we could read the input files in Python
and calculate the required information for our model. Also, we could call the "SAR, Optimizer”
of the "Search Planner” from a Python method, and then that method would be a part of our
external function. Our experiment includes two phases. We ran our model with and without the
Surrogate function of hexaly. This was because we wanted to know if this function contributed to
our results or not. Since the result of our model without the surrogate was deterministic, we ran
it once. In contrast, we ran the model with the surrogate function 30 times. Because time is an
important resource in any search and rescue operation, we set the time limit to 45 seconds.
Here is the summary of our experimental configurations:

1. Deterministic Phase:

e Model execution without Surrogate function
e Single run per instance due to deterministic nature

e Time limit: 45 seconds per run
2. Stochastic Phase:

e Model execution with Surrogate function enabled
e 30 independent runs per instance

e Time limit: 45 seconds per run

We performed a statistical analysis with Mean Performance, Standard Deviation, and Best
solution found. Also, The 95% confidence intervals are calculated using Student’s t-distribution.
For each instance, a box plot is generated to show the results.

6 Results

The measurements collected from our experimental protocol are related to solution quality mea-
surement.

Table 1 presents the comparative results of both optimization approaches across all test in-
stances. While the deterministic approach consistently resulted in infeasible solutions, the stochas-
tic approach with surrogate modelling achieved feasible solutions in all instances, with success rates
of 100% (30/30 runs). Instance D1 showed the highest variability (std = 0.021) while B1 demon-
strated the most consistent results (std = 0.001). As you can see, without the surrogate function,
all instances couldn’t find a feasible and logical solution, since the domain is continuous and there
are unlimited possibilities for generating rectangles and this is because the time limitation is tight
(45 seconds). However, within that tight time limit, the surrogate function helped the model not
only effectively find the feasible rectangles, but also got a very high probability of success.

Table 1: Comparison of Deterministic and Stochastic Optimization Results

Instance Deterministic Stochastic (30 runs)

Status Status Best POS Mean POS Std CI (95%)
D1 INFEASIBLE | FEASIBLE 0.999 0.974 0.021 [0.966, 0.982]
B1 INFEASIBLE | FEASIBLE 0.996 0.995 0.001 [0.994, 0.995]
C1 INFEASIBLE | FEASIBLE 0.567 0.534 0.037 [0.521, 0.548]
Al INFEASIBLE | FEASIBLE 0.933 0.921 0.009 [0.918, 0.925]

Note: CI = Confidence Interval

Figure 2 shows the search rectangles for both deterministic and stochastic approaches across
all test instances (A1, B1, Cl1, D1). For each instance, the left panel represents the deterministic
search pattern, while the right panel shows the stochastic surrogate-assisted search pattern.

The stochastic approach shows better coverage of the search space, which likely contributed
to its success in finding feasible solutions in all instances. In addition, for C1, the notably lower
performance metrics (mean = 0.534, std = 0.037) can be attributed to its unique Z-shaped on-scene
data distribution. This zigzag pattern presents a particularly challenging scenario for rectangle
fitting because the sharp turns in the drift data make it difficult to achieve high coverage with
rectangular shapes. These visual patterns align with our numerical results, where the stochastic
approach consistently outperformed the deterministic method by finding feasible solutions across
all test instances.

We performed statistical analysis with Mean Performance, Standard Deviation, and Best solu-
tion found. Also, The 95% confidence intervals are calculated using Student’s t-distribution. For
each instance, a box plot is generated to show the results.

Figure 3 presents the box plot analysis of the stochastic surrogate-assisted optimization results
across four test instances (A1, B1, Cl, and D1). The deterministic approach results are not
included as they yielded infeasible solutions with objective values of 0 across all instances.

Comparing the four instances reveals distinct performance patterns in the stochastic opti-
mization approach. Instance B1 demonstrated the most robust performance with consistently high
objective values (median = 0.995) and minimal variation, indicating reliable solution quality across
multiple runs. Instance D1 also achieved strong results with objective values between 0.96-1.00,
though with notably more variation than B1. Al showed good performance with values centered
around 0.92, displaying moderate variability. In contrast, C1 exhibited significantly lower perfor-
mance (median = 0.54) and the highest variability among all instances, with outliers dropping
as low as 0.45. This performance hierarchy (B1 > D1 > Al > C1) shows the varying levels of
complexity in the underlying geometric distributions of each instance, with C1’s Z-shaped distri-
bution presenting the most challenging case for rectangular approximation. The outliers in C1 and
B1 represent runs where the algorithm found less optimal solutions, highlighting that while the
method is generally consistent, it can occasionally converge to inferior results.

In table 2 you can see the result of SAR Optimizer or it is better to say SAR Optimizer
without the overlap constraints (like using the input case and input data without our interference).
The algorithm demonstrated high POS values for most instances. Instance D1 achieved the best
performance with a POS of 0.999 and the fastest execution time of 31.8 seconds. B1 and Al also
showed strong results with POS values of 0.991 and 0.978 respectively, though requiring nearly
double the execution time (approximately 60 seconds each). C1, with its challenging Z-shaped
distribution, achieved a POS of 0.780, significantly higher than constrained versions but still the
lowest among all instances. Notably, while these results show higher POS values compared to the
constrained version, they don’t represent practically viable solutions due to the potential rectangle
overlaps. Also, directly comparing our POS values with SAR Optimizer is not feasible since the
search pattern generation methodologies may differ between implementations.

Table 2: SAR Optimizer Performance Without Overlap Constraint
Instance POS Execution Time (s)

D1 0.999 31.8
B1 0.991 61.9
C1 0.780 58.8
Al 0.978 59.8

10 A1l - Deterministic Run Al - Stochastic Run

0.8
0.6
0.4

0.2

0.0

B1 - Stochastic Run

1.0

0.8

0.6

0.4

0.2

0.0
0.4

CC1 - Deterministic Run CC1 - Stochastic Run

1.0

0.8

0.6

00 T &
0.0 0.2 0.4 0.6 0.8 1.0

10 D1 - Deterministic Run D1 - Stochastic Run

0.8

0.6

0.41

0.2

00 » -
0.0 0.2 0.4 0.6 0.8 1.0

Figure 2: Generated search rectangles for both deterministic and stochastic approaches across all
instances

7 Discussion

Our experimental results showed that our model without the surrogate function couldn’t find a
feasible solution within this time constraint. This is because the domain is continuous and there
are unlimited possibilities for generating rectangles without considering previously gathered data.
However, with the surrogate function enabled, we not only effectively found feasible rectangles but
also achieved a very high probability of success values.

We were working on longitude and latitude projected using Mercator, and since our problem
was continuous, even with a high value of POS there could be unlimited rectangles to get the best
results. This is because the difference of each geographical percent degree can change the rectangle
but not necessarily contribute to or detract from the solution quality.

When we ran the MSAR without using our model (without overlap constraints), it achieved
higher POS values (0.999 for D1, 0.991 for B1), but the rectangles generated didn’t have the
overlap constraint. While these unconstrained results showed higher POS values compared to
our constrained version, they don’t represent practically viable solutions due to the potential
rectangle overlaps. Our constrained model, though achieving slightly lower POS values, ensures
non-overlapping search patterns that are implementable in real SAR operations.

Ce ison of O ization Results - A1 Ce ison of O ization Results - B1

— surrogate — surrogate
0.9955
093

09950

092
09945

L 3 09940

09935

jective Val

b
b

090 09930

09925

09920
° °

surrogate surrogate

A1 B1

Results - CC1 Comparison of O Results - D1

— surmogate 100 T — surmogate

099

of Opti
3052 g
] ERYT
8 0s0 g
8 8

surrogate surrogate

cc1 D1

Figure 3: The box plot of the stochastic surrogate-assisted optimization results across four test
instances

8 Conclusion

This study addresses the overlapping problem of search areas in Maritime Search and Rescue
operations for moving search objects by integrating constraint programming with black-box opti-
mization. The proposed method ensures that search rectangles generated for different search units
are non-overlapping, thereby enhancing operational safety and efficiency.

Our experimental results demonstrate that the deterministic approach fails to find feasible
solutions within the imposed time constraints due to the continuous nature of the search domain.
In contrast, the stochastic approach utilizing surrogate modelling consistently identifies feasible
and effective search rectangles across all test instances, achieving a high value of POS within
the 45-second time limit. This highlights the significant advantage of using surrogate models in
optimizing complex and real-time decision-making processes.

Furthermore, while the unconstrained SAR Optimizer achieved higher POS values, these solu-
tions could be impractical for real-world applications due to potential overlaps. Our constrained
model, though slightly lower in POS, provides practically viable and safe search patterns essential
for successful SAR missions.

Future work could explore the scalability of this approach to accommodate more search units
and larger search areas, as well as targeting to improve the POS of the non-spherical drift shapes.

9 Appendix

You can find the programming code in the attachment.

References

[1] Irene Abi-Zeid and John R Frost. Sarplan: A decision support system for canadian search and
rescue operations. Furopean Journal of Operational Research, 162(3):630-653, 2005.

[2] Iréne Abi-Zeid, Michael Morin, and Oscar Nilo. Decision support for planning maritime search
and rescue operations in canada. SciTePress, 2019.

10

[3] Ishan Bajaj, Akhil Arora, and MM Faruque Hasan. Black-box optimization: Methods and
applications. In Black box optimization, machine learning, and no-free lunch theorems, pages
35-65. Springer, 2021.

[4] Oyvind Breivik and Arthur A Allen. An operational search and rescue model for the Norwegian
Sea and the North Sea. Journal of Marine Systems, 69(1-2):99-113, 2008. Publisher: Elsevier.

[6] Hexaly. Constrained black-box optimization.

[6] Emeline Tenaud. Optimisation de fonctions boites noires avec et sans contraintes. In 25¢me
congres annuel de la Société Frangaise de Recherche Opérationnelle et d’Aide a la Décision,
2022.

11

	Abstract
	Introduction
	Search Planner

	Problem Description
	Proposed Method
	Experimental protocol
	Results
	Discussion
	Conclusion
	Appendix

