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1 Introduction

In recent years, neural networks (NNs) has overtaken state of the art in several domains, namely in
natural language processing [1] and computer vision [2, 3]. These advances allow one with important
computational and memory resources to train truly deep and wide neural networks on enormous
corpus of text or image datasets containing millions of examples. It is a widespread thought that the
predictive performance of a NN increase with its number of parameters, motivating researchers to
always train bigger and bigger NNs [4–7]. The main drawback of these models is that their huge
complexity prohibit their deployment in scenarios where being able to interpret the predictor is of
importance. Various techniques have been proposed to lighten NNs in order to make them simpler;
in addition to being natural regularizer [8, 9], the use of weights encoded by a small number of bits
[10–12] and quantized activation functions, notably binary activation functions [8, 13, 14], have
shown promising results. Also, methods such as network pruning [15–19], weight sharing [20] or
matrix factorisation [21] allow compacting a trained NN, resulting in lighter predictors.

The aforementioned processes involve many manipulations : first, it is necessary to train several deep
and wide NNs (with various combinations of hyperparameters and architectures). Then, they must be
pruned using, once again, various techniques, having no guarantee that trained network that obtain
the best performances will still be the best pruned network. Plus, as implied by the Lottery Ticket
Hypothesis from Frankle and Carbin [22], in order to obtain an efficient compact network from a
pruned bigger network, the latter must be big enough so that the chances are high that, within a few
different random seeds, it contains a compact but performing sub-network. Thus, it seems like a
lot of work for obtaining, in the end, a small and compact predictor. Working backward would be
an interesting avenue in order to obtain such networks without needing important computational
resources to train wide NNs first; starting with small NNs and making them grow, just like a decision
tree is built. Unfortunately, while it’s been shown that greedy approaches can scale to colossal
problems such as ImageNet [23], the literature concerning greedy approach for training NNs is pretty
arid [24–26], and even more for networks with quantized components.

We propose CPNet, an algorithm for tackling binary classification tasks and greedily building compact
and interpretable binary activated neural networks (BANNs), one neuron at a time, with the help of
constraint programming. It is the first time, to the knowlodge of the authors, that binary activated
neural networks are both studied as interpretable predictors and trained with CP by making use of the
fact that each neuron of such networks can be seen as a separating hyperplane. CPNet uses a dual
optimization scheme; we propose two distinct way to obtain an optimal 0-1 loss when manipulating a
separating hyperplane. Finally, we present an interesting result giving a condition for a dataset to be
linearly separable.

2 Related work

Constraint programming (CP) and mixed-integer linear programming (MILP) While some of
the literature involving both CP or MILP and binary neural networks concerns the filed of adversarial



attack [27], some tackles the problem of neural network verification [28–30]. Binary neural networks
have been trained [31] or optimized [32] with CP, but mostly by considering not only the activations
to be binary, but the weights as well.

Greedy neural network training Greedy approaches for training NNs usually refers to the use
of a layer-wise training scheme [23–25, 33–35]. The usual procedure is the following: first, the full
network is trained. Then, the first layer of the network is fixed. The network is retrained, where each
layer but the first is fine-tuned. The second layer of the network is then fixed, and so on. Only a few
paper consider building one neuron at a time the network [35].

3 Details on the problem

Interpretable BANNs We’ll use the Rudin’s paradigm of interpretability [36, 37] which roughly
goes as follow: a predictor is interpretable if one can understand and comprehend its decision process
solely by considering the predictor in itself. Such an approach thus prohibit cases where explainability
techniques such as LIME [38] or the SHAP values [39] are used to understand the predictor.

Let’s take a look at what an interpretable BANN might look like. Let’s consider the task of predicting
the costs of insuring a house; let a be its age, b be the number of floors it has, B a BANN and 1{·}
the indicator function. Then, B could be defined as follow:

B(a, b) = 50 + 100 ∗ 1{a > 50}+ 200 ∗ 1{b > 1}.
Simply by looking at it, we understand that the base cost for insuring a house, in this case, is 50$.
Then, if the house is more then 50 years old, is costs 100$ more, probably because older houses are
more prone to be problematic. Finally, if the house has more than 1 floor, it costs 200$ more, probably
because the number of floor of a house has a proportional relationship with it’s value. Overall, the
role of each parameter of the model is easily understandable.

We’ll focus on predictors where the indicator function 1. do not contain more than 2 variables
(more than 2 might be a bit to complex to easily interpret) and 2. do not contain any indicator
function. Basically: our predictor will be 1. single-hidden layered and 2. each hidden neuron will be
parameterized by at most two non-zero weights.

Tasks From now on, we’ll be focusing on binary classification tasks.

A binary neuron is a separating hyperplane An important thing to understand is that a hidden
neuron, as well as the output neuron of any binary classifier, can be seen as a separating hyperplane.
Indeed, those neurons acts as follow: N(x;w, b) = 1{⟨x,w⟩+ b > 0}. Thus, w corresponds to the
orientation of a separating hyperplane, while b corresponds to its bias and N(x;w, b) tells whether x
is on one side of the hyperplane or the other.

SVM If the goal, when parameterizing a hidden neuron, is thus to find the best separating hyper-
plane, why not simply tackle this problem using a soft-margin SVM, with a linear kernel and a truly
small regularisation parameter? Well, this approach minimizes the L2 norm of the orientation of the
hyperplane and the obtained hinge loss, a soft surrogate for the 0-1 loss. Therefore, even though it
is sure to converge, it won’t lead to the best classifier from the 0-1 loss point of view. We’ve got to
tackle this problem without using a surrogate loss function in order to obtain compact predictors.

The method Since we build our network greedily, we alternate between adding (and parameterizing)
a new neuron on the hidden layer and updating the weights and bias of the ouput layer (see Figure 2
in appendix for a visual representation of the building steps). We’ll be using threshold activation
function instead of the more common sign function for interpretability purposes (it’s been showed
that the parameterization of the binay activation function has no impact on the space of obtainable
predictor [35]).

4 One problem, two perspectives

At each step of the algorithm, it all comes to this: finding the best separating hyperplane considering
a set of examples being labeled 1 (positive) and a set of examples being labeld 0 (null). For generality
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sake, we will considered weighted examples, so that misclassifying a certain example might be less
important than misclassfying others. Let’s look at two approaches for tackling our problem.

4.1 Primal

The primal approach is the most natural way to tackle the problem; we try to place the hyperplane in
the feature space such that it leads to the best separation of the examples (best 0-1 loss). Therefore, it
is a maximization problem; we try to maximize this accuracy. This approach also leads to a pretty
simple CP model:

Primal model explaination
• n1 : number of example of the first class;
• n2 : number of example of the second class;
• d : dimension of the examples;
• c : maximum number of non-zero values for w;
• A : na × d matrix containing every first class points;
• B : nb × d matrix containing every first class points;
• ValA : vector of lenght na containing the weights of each datapoint of the first class (f.c.);
• ValB : vector of lenght nb containing the weights of each datapoint of the second class (s.c.);
• Variables wi∀i ∈ {1, . . . , d} : correspond to the orientation of the separating hyperplane to

be placed;
• Variable b : correspond to the bias of the separating hyperplane to be placed;
• Variables indi ∈ {0, 1}∀i ∈ {1, . . . , d} : correspond to an indicator telling whether wi is 0

or not ∀i ∈ {1, . . . , d}.
• Constraint #1 : makes sure that the value of indi is 1 if wi is different from 0, and 0

otherwise ∀i ∈ {1, . . . , d} (there are d of them);
• Constraint #2 : makes sure that the L1 norm of the vector w is equal to one (there is a single

one);
• Constraint #3 : makes sure m corresponds to the minimal value of a data point to the

hyperplane; (there is a single one);
• Constraint #4 : makes sure that at least d+ 1 points share the minimal distance from a point

to the hyperplane (there is a single one);
• Constraint #5 : makes sure at most p component of w are different from 0 (there is a single

one).

Primal MiniZinc model (1/2)

n1 Number of data points - f.c.
n2 Number of data points - s.c.
m Minimal distance of a point to the hyperplane
d Dimension of the data points
c Maximum number of non-zero values for w
A ∈ [0, 1]na Data points - f.c.
B ∈ [0, 1]nb Data points - s.c.

V alA ∈ [0, 1]d Weights - f.c.

V alB ∈ [0, 1]d Weights - s.c.
dom(wi) = [−1, 1] ∀i ∈ {1, . . . , d}

dom(b) = [−d, d]
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Primal MiniZinc model (2/2)

dom(indi) = {0, 1} ∀i ∈ {1, . . . , d}∑
i∈{1,...,na}

V alAi ∗ 1{⟨w, Ai⟩+ b ≥ 0}

+
∑

i∈{1,...,nb}

V alBi ∗ 1{⟨w, Bi⟩+ b < 0} Objective function

(wj ̸= 0 ∧ indj = 1) ∨ (wj = 0 ∧ indj = 0) ∀j ∈ {1, . . . , d} (1)∑
j∈{1,...,d}

|wj | = 1 (2)

m = min

(
min

i∈{1,...,na}

(
|⟨w, Ai⟩+ b|

)
, min
i∈{1,...,nb}

(
|⟨w, Bi⟩+ b|

))
(3)∑

i∈{1,...,na}

1{|⟨w, Ai⟩+ b| = m}+
∑

i∈{1,...,nb}

1{|⟨w, Bi⟩+ b| = m} > d (4)

∑
j∈{1,...,d}

indj ≤ c (5)

In order to make the training phase simpler for the solver, we consider each of the examples
having values in [0,1] for each of their dimensions (the input have been min-max normalized).
Since sign(x) = sign

(
x
c

)
∀c ∈ R∗

+, we can consider without loss of generality that the vector
parameterizing the hyperplane to have values in [-1,1]. As for the bias, since the hyperplane has
values in [-1,1] and the examples have values in [0,1], than the biases needs not to be in a bigger
range than [-d,d] since, for any example x, |⟨x,w⟩| ≤ d. Doing so leads to considering closed ranges
for w and b during the training.

We also considered two tricks in order to make the solver find the optimal solution faster, considering
that an infinite number of hyperplanes can lead to the same classifications:

1. We tried fixing the L1 norm of the variables w. The idea is that the scale of the parameters
has no effect on the prediction, so their norm can be fixed without impacting the obtained
solution space (Constraint #2). We used the L1 norm so that a solver only able to manipulate
single order constraints is able to manipulate that one.

2. We demanded having at least d+ 1 points sharing the smallest distance to the hyperplane.
This can be done considering that for any separation made by a hyperplane in d dimension,
there exists such a configuration (Constraint #3-#4).

In the end, both tricks did not lead to faster training of the solver, so we removed them. It seems
that the computation cost of such constraints hinder the computational gains of avoiding redundant
solutions.

4.2 Dual

The dual approach of our problem emerges from the following consideration: a hyperplane separating
the example space probably makes some misclassifications; but, when those misclassified examples
are removed from the dataset, than the remaining points are linearly separable. Therefore, our
problem can be seen as follow: what is the set of points having the minimal cumulative weight
that can be "removed" (unconsidered) from our dataset such that the remaining points are linearly
separable?

Now, we need a way to effeciently compute which points contribute to the non-linear separability of
the dataset. Our approach will be based on the following (original) result:
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Lemma 1 (Linear separability criteria).
Let A ∈ Rd×nA ×{1}nA , B ∈ Rd×nB ×{1}nB be two sets of points from Rd ×{1}. Let LS(A,B)
be true if A and B are linearly separable, and false otherwise. Then:

LS(A,B) ⇔ (∄c ∈ RnA ,d ∈ RnB |Ac = Bd ̸= 0) .

The proof of Lemma 1 can be found in appendix. What that last result tells us it that if sets of points
A and B that aren’t linearly separable, then there exists a linear combination of some points from A
being equal to a linear combination of some points from B. Finding such linear combinations gives
us insights on which subsets of points contribute to the non-linear separability of our problems.

Our algorithm will thus have the following behaviour, involving two solving models that interact with
each other: model #1 tries to find a subset of points from A and B that is not linearly separable and
feeds it to the model #2, determining which weighted point should be neglected so that the remaining
ones become linearly separable. The solution (let’s say C) is fed to model #1, now trying to find a
subset of non-linearly separable points that does not involve any points from C and that is different
from the solution that it has previously found. The constraint is fed to model #2, now trying to find
which points should be neglected, considering two sets of points (possibly not disjoint) that aren’t
linearly separable. This goes on until model #1 can’t find any non-linearly separable subsets, meaning
the optimal separation is found

Dual model #1 explaination (1/2)
• n1 : number of example of the first class;
• n2 : number of example of the second class;
• d : dimension of the examples;
• pA : binary vector of length na telling which datapoints of the first class not to include in

the linear combination;
• pB : binary vector of length nb telling which datapoints of the second class not to include

in the linear combination;
• A : na × d matrix containing every first class points;
• B : nb × d matrix containing every first class points;
• ValA : vector of lenght na containing the weights of each datapoint of the first class;
• ValB : vector of lenght nb containing the weights of each datapoint of the second class;
• Variables WhiAi∀i ∈ {1, . . . , na} : corresponds to the linear combination coefficient of

first class points;
• Variables WhiBi∀i ∈ {1, . . . , nb} : corresponds to the linear combination coefficient of

second class points;
• Variables IndAi∀i ∈ {1, . . . , na} : tells whether or not WhiPi is 0 or not;
• Variables IndBi∀i ∈ {1, . . . , nb} : tells whether or not WhiMi is 0 or not;
• Variables TriAi∀i ∈ {1, . . . , na} : contains the weight value of a data point if that point is

included in the linear combination, and the maximum weight value (1) otherwise; is useful
for rendering a set of points for which the minimal weight value is maximized;

• Variables TriBi∀i ∈ {1, . . . , nb} : contains the weight value of a data point if that point is
included in the linear combination, and the maximum weight value (1) otherwise;

• Constraint #1 : makes sure that a linear combination of A is found so that it equals a linear
combination of B (there is a single one);

• Constraint #2 : makes sure that IndAi reflects whether data point Ai is included in the
linear combination or not ∀i ∈ {1, . . . , na} (there are na of them);

• Constraint #3 : makes sure that IndBi reflects whether data point Bi is included in the
linear combination or not ∀i ∈ {1, . . . , nb} (there are nb of them);

• Constraint #4 : makes sure at least one point from the dataset is involved in the linear
combination (there is a single one);

• Constraint #5 : makes sure that TriAi is equal to the weight value of data point Ai is that
last is included in the linear combination, and 1 otherwise (there is a single one);

• Constraint #6 : makes sure that TriBi is equal to the weight value of data point Bi is that
last is included in the linear combination, and 1 otherwise (there is a single one);

5



Dual model #1 explaination (2/2)
• Constraint #7 : making sure that the points that should not be included in the linear

combination aren’t part of it (there is a single one);
• Constraint #8 : making sure that the points that should not be included in the linear

combination aren’t part of it (there is a single one).

Dual MiniZinc model #1 (1/2)

n1 Number of data points - f.c.
n2 Number of data points - s.c.
d Dimension of the data points

pA ∈ {0, 1}na Datapoints not to include in the linear combination
pB ∈ {0, 1}nb Datapoints not to include in the linear combination
A ∈ [0, 1]na Data points - f.c.
B ∈ [0, 1]nb Data points - s.c.

V alA ∈ [0, 1]d Weights - f.c.

V alB ∈ [0, 1]d Weights - s.c.
dom(WhiAi) = {0, . . . , d} ∀i ∈ {1, . . . , na};
dom(WhiBi) = {0, . . . , d} ∀i ∈ {1, . . . , nb};
dom(IndAi) = {0, 1} ∀i ∈ {1, . . . , na};
dom(IndBi) = {0, 1} ∀i ∈ {1, . . . , nb};
dom(TriAi) = [0, 1] ∀i ∈ {1, . . . , na};
dom(TriBi) = [0, 1] ∀i ∈ {1, . . . , nb};

min
i∈{1,...,na}

TriAi + min
i∈{1,...,nb}

TriBi Objective function (maximize)

Dual MiniZinc model #1 (2/2)∑
i∈{1,...,na}

WhiAi ∗Ai,j +
∑

i∈{1,...,nb}

WhiBi ∗Bi,j ∀j ∈ {1, . . . , d} (1)

(WhiAj > 0 ∧ IndAj = 1) ∨ (WhiAj = 0 ∧ IndAj = 0) ∀i ∈ {1, . . . , na} (2)

(WhiBj > 0 ∧ IndBj = 1) ∨ (WhiBj = 0 ∧ IndBj = 0) ∀i ∈ {1, . . . , nb} (3)∑
i∈{1,...,na}

IndAi > 0 (4)

(IndAi = 1 ∧ TriAi = V alAi) ∨ (IndAi = 0 ∧ TriAi = V 1) ∀i ∈ {1, . . . , na} (5)

(IndBi = 1 ∧ TriBi = V alBi) ∨ (IndBi = 0 ∧ TriBi = V 1) ∀i ∈ {1, . . . , nb} (6)

pAi = 0 ∨ IndAi = 0 ∀i ∈ {1, . . . , na} (7)

pBi = 0 ∨ IndBi = 0 ∀i ∈ {1, . . . , nb} (8)

Now, some considerations:

• Notice that model 1 considers positive linear combination of points from the dataset with
coefficients in {0, . . . , d}n, n ∈ na, nb and not in Rn

+ as in Lemma 1; see Corollary 1.

• In practice, we do not only feed to models #1 and #2 the resulting set of point minimizing
the objective function of model #1, but also every intermediate sets of points. Doing so
really makes the training faster.

• Model does not only find a solution satisying the contraint, is finds the non-linearly separable
subset where the smallest weight is maximized. We do so because most of the time, only
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unconsidering a single point suffices so that the remaining become linearly separable. So, no
matter which point is removed, it will have an important impact on the obtainable accuracy.

Dual model #2 explaination
• n1 : number of example of the first class;
• n2 : number of example of the second class;
• d : dimension of the examples;
• c : number of subset of point that aren’t linearly separable that has been spotted so far;
• pA : binary na×c matrix telling, on each row, which points from A are part of a non-linearly

subset;
• pB : binary nb×c matrix telling, on each row, which points from A are part of a non-linearly

subset;
• A : na × d matrix containing every first class points;
• B : nb × d matrix containing every first class points;
• ValA : vector of lenght na containing the weights of each datapoint of the first class;
• ValB : vector of lenght nb containing the weights of each datapoint of the second class;
• Variables IndAi∀i ∈ {1, . . . , na} : tells whether or not WhiPi is 0 or not;
• Variables IndBi∀i ∈ {1, . . . , nb} : tells whether or not WhiMi is 0 or not;
• Constraint #1 : making sure the solution yielded is not the same as one previously seen;

Dual MiniZinc model #2

n1 Number of data points - f.c.
n2 Number of data points - s.c.
d Dimension of the data points
c Nb. of non-lin. s. subsets seen

pA ∈ {0, 1}na×c Subsets not linearly separable

pB ∈ {0, 1}nb×c Subsets not linearly separable
A ∈ [0, 1]na Data points - f.c.
B ∈ [0, 1]nb Data points - s.c.

V alA ∈ [0, 1]d Weights - f.c.

V alB ∈ [0, 1]d Weights - s.c.
dom(IndAi) = {0, 1} ∀i ∈ {1, . . . , na};
dom(IndBi) = {0, 1} ∀i ∈ {1, . . . , nb};∑

i∈1,...,na}

IndAi ∗ V alAi +
∑

i∈1,...,na}

IndAi ∗ V alAi Objective function (maximize)

( ∨
i∈{1,...,na}

(pAk,i = 1 ∧ IndAi = 0)

)

∨

( ∨
i∈{1,...,nb}

(pBk,i = 1 ∧ InBAi = 0)

)
∀k ∈ {1, . . . , c} (1)

4.3 Strong duality

Since both our approaches (primal and dual) lead to the single optimal solution, and that the primal
constitutes a lower bound on the obtainable accuracy, and the dual an upper bound, because the
accuracy diminishes throughout the training, then there is a strong duality:
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Theorem 1. Let A ∈ Rd×nA × {1}nA , B ∈ Rd×nB × {1}nB be two sets of points from Rd × {1}.
Let f(w;C,D) =

∑
i 1{⟨w, ci⟩ < 0} +

∑
j 1{⟨w,dj⟩ ≥ 0} and LS(C,D) be true if C and

D and linearly separable and false otherwise. The problem of finding the separating hyperplane
achieving the lowest 0-1 loss lead to the two following optimization problems, forming a strong
duality:

Primal form
maximize

w
f(w;A,B)

Dual form
minimize

x
|C|+ |D|

subject to LS(A \C,B \D)

Proof. The primal form directly maximizes the 0-1 accuracy; the solution given by the primal form is
optimal. The dual form yield a solution such that the number of points that aren’t correctly classified
is minimized. Therefore, it maximizes the 0-1 accuracy and yield an optimal solution.

4.4 The CPNet algorithm

First of all, let’s recap what the dual algorithm looks like.

Algorithm 1 The dual algorithm

1: Input : A = {(x1, y1), . . . , (xna , yna)}, y ∈ {+1}, x ∈ [0, 1]d × {1}, positive examples
2: B = {(x1, y1), . . . , (xnb

, ynb
)}, y ∈ {−1}, x ∈ [0, 1]d × {1}, a null examples

3: Md,1 and Md,2, the first and the second dual model
4: ρ = True
5: t = 0
6: r = 0na+nb

7: While ρ :
8: t = t+ 1
9: Tt = Md,1(A,B; r)

10: If |Tt| = 0:
11: ρ = False
12: Else:
13: r = Md,1(A,B;T1, . . . ,Tt)
14: Output : r

Algorithm 1 shows the behaviour of the dual algorithm. Md,1 seeks for sets of points that aren’t
linearly separable. Each time it is called, it can spot more than one, each of them being consigned
in matrix Tt. Those subsets are than given to Md,2, trying to determine which points should be
unconsidered so that the weighted sum of these points is minimized. Its selection is given to Md,1,
having to find subsets that do not involve any of these points, and so on.

Algorithm 2 presents the CPNet algorithm. We can separate each step of the algorithm into two main
parts:

1. (line 12) The parametrization of a neuron is done. To do so, we make use of the fact that
the primal approach can easily restrict the obtained parameterization to have at most two
non-zero components (excluding a bias, so three total). Because of this constraint, this
training phase can be done pretty quickly.

2. (lines 13 to 23) The (re)parameterization of the output layer is made. Notice on line 13 that
a unit term is added, so that vector c contains an implicit bias. For that second part, the
training can be quite long to do. So, we start both primal and dual approaches at the same
time. There are two possibilities: either Md converges, so that we can remove the points
it has spotted from the dataset and compute a simple hard-margin SVM on the remaining
linearly separable dataset; or we directly use the model given by Mp. This occurs when:
the upper bound on the obtainable accuracy (given by Md) is at ϵ from what Mp already
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Algorithm 2 The CPNet algorithm

1: Input : A = {(x1, y1), . . . , (xna
, yna

)}, y ∈ {+1}, x ∈ [0, 1]d × {1}, positive examples
2: B = {(x1, y1), . . . , (xnb

, ynb
)}, y ∈ {−1}, x ∈ [0, 1]d × {1}, a null examples

3: Mp and Md, the primal and the dual model
4: δ a limit of time per neuron optimization
5: ϵ a tolerance between the upper and lower bounds
6: l, the maximum hidden layer width
7: A′,B′,W, c = A,B,0l×d+1,0d+1

8: B(·) = c [1{W × ·}, 1]
9: t = 0

10: While t ≤ l ∧ |A| > 0 ∧ |B| > 0 :
11: t = t+ 1
12: wt = Mp(A

′,B′; c = 2)
13: A∗,B∗ = [1{WA′},1na

] , [1{WB′},1nb
]

14: Start Mp(A
∗,B∗; c = 3) and Md(A

∗,B∗)
15: ap, ad = Mp.perf(),Md.perf()
16: ts = current time
17: While ad − ap > ϵ ∧Mp and Md haven’t converged ∧ current time - ts < δ:
18: Wait
19: If Md has converged:
20: c = SVM(A ∪B \Md.output())
21: Else
22: c = Mp.output()
23: A′,B′ = A,B \ the points correctly classified by B
24: Output : B(x) = c · [1{Wx}, 1]

achieves, or too much time has passed trying to find the optimal solution (controlled by
an hyperparameter δ), or Mp converges. Finally, the points that are currently classified
correctly by the model are removed from the dataset for the next iteration, so we can focus
on misclassified points.

5 Numerical experiments

For our numerical experiments, we used Coin-BC 2.10.8/1.17.7 solver. Our algorithms were written
in Python with the help of the Minizinc package.

5.1 Relevance of both approaches

Figure 1 illustrates the relevance of both approaches when tackling a toy dataset and trying to find the
optimal location for a separating hyperplane. The primal approach quickly finds a good solution, but
it takes long before the solver makes sure that that solution is optimal. As for the dual approach, we
clearly see that it continuously reduces the upper bound on the obtainable accuracy until it finds the
optimal solution. This figure also illustrate that both approaches do converges to a same solution.

5.2 Test on a real-life datasets

Divorce dataset [40] Our first test is on a dataset concerning divorce. Couples were to fill a form
with many questions, answering on a scale on 0 to 4. There were a total of 54 questions. Only two
were kept in our model, achieving 99.45% accuracy on the dataset of 170 examples:

B(x1, x2) = 1{2x1 + 2x2 > 5},

where : x1 = "We share the same views about being happy in our life with my spouse" and x2 =
"We’re just starting a discussion before I know what’s going on". The labels go as follow : y = 0 :
"Divorced" and y = 1 : "Married". A truly simple model that is just big enough to achieves great
performances. What we understand here is that there is a strong relationship between these two
variables and not to be divorced. Moreover, if one variable has a really strong value, it doesn’t matter
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Figure 1: Training behaviour of both primal and dual approaches from placing a hyperplane in the
feature space. Experiments on a dataset A,B ∈ {0, 1}50×11; 50 examples per classes, dimension 11
with random features.

whether or not the other one has a strong value. Since the dataset was small, only about five seconds
were needed to build the predictor.

Cervical Cancer Behaviour Risk Data Set [41] This dataset contains 19 behaviour and feelings
of people on a scale of 0 to 15, 21 of them having cervical cancer (y = 1) and 51 of them who hasn’t
(y = 0). We obtain the following model:

B(x1, x2) = 1{1{x1 + x2 < 14} + 1{x3 < 6} > 0}

Only three variables were kept in the model (x1 = "Perception - Vulnerability", x2 = "Empowerment
- Abilities", x3 = "Behaviour - Personal hygiene"), and still, it achieves 91.7% of accuracy. What we
understand here is that variables x1 and x2 most be low-valued in order to predict that the person has
cervical cancer. Not only that, but variable x3 also need to be pretty low. In fact, if x1 + x2 is not
small enough, or if x3 is not small enough, than the prediction will be 0 - no cervical cancer. Both
these relations thus play an important role in this model predictions. Since the dataset was small, only
about fifteen seconds were needed to build the predictor.

6 Conclusion

We presented CPNet, an algorithm for building small, compact and interpretable binary activated
neural networks. We use the word "building" because we start by considering a single hidden layer
with a single neuron before iteratively making that layer grow. Such an approach leads to locally
optimal components; for example, the output layer is always optimally optimized, and when a neuron
is added, it is optimally placed in the feature space, but not network in its whole is not. Our approach
was strongly dual, making use of two different perspectives of the problem of optimizing the 0-1 loss
using a separating hyperplane. We also presented an interesting result giving a condition for a dataset
to be linearly separable.

One of the most interesting improvement to the CPNet algorithm, in order to make sure the that model
does not over-learn the training dataset, would be to include a criteria of relevance, as in decision
tree growing (Gini index, for example), to decide whether it is worth it or not to add a new neuron
to the hidden layer. The idea could be pushed even further: why not using such a criteria to decide
whether it is relevant or not to have two or three non-zero weights on hidden neurons? Maybe, in
some cases, only having a single non-zero weight on some neurons would yield a predictor as much
as good while being more easily interpretable!
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Appendix
A Mathematical results

A.1 Proof of Lemma 1

Lemma 1 (Linear separability criteria).
Let A ∈ Rd×nA ×{1}nA , B ∈ Rd×nB ×{1}nB be two sets of points from Rd×{1}. Let LS(A,B)
be true if A and B are linearly separable, and false otherwise. Then:

LS(A,B) ⇔ (∄c ∈ RnA ,d ∈ RnB |Ac = Bd ̸= 0) .

Proof. Let us first remind of Farka’s lemma:

Lemma 2 (Farka’s lemma). Let A ∈ Rm×n and b ∈ Rm. Then exactly one of the following two
assertions is true:

1. There exists an x ∈ Rn such that Ax = b and x ≥ 0;

2. There exists a y ∈ Rm such that ATy ≥ 0 and bTy < 0.

Let us also remind of a version of the hyperplane separation theorem involving both a closed set and
an open set:

Theorem 2 (Hyperplane separation theorem). Let A and B be two disjoint nonempty convex sets. If
A is open, then there exist a non-zero vector v such that

(∀a ∈ A | ⟨a,v⟩ ≥ 0) ,

(∀b ∈ B | ⟨b,v⟩ < 0) .

Here, the notation x ≥ 0 means that all components of the vector x are non-negative, and x > 0 that
they’re all positive. Let B = {b |

(
∃c ∈ RnB

+ \ {0nB
} | b = Bc

)
}. We have that

LS(A,B) ⇔
(
∃y ∈ Rd |ATy ≥ 0 ∧BTy < 0

)
⟨By definition⟩

⇔
(
∃y ∈ Rd |ATy ≥ 0 ∧

(
∀b ∈ B | bTy < 0

))
⟨Positive linear combination of

negative terms yield a negative term⟩
⇔
(
∃y ∈ Rd |

(
∀b ∈ B |ATy ≥ 0 ∧ bTy < 0

))
⟨Conjonction’s distributive prop.⟩

⇔
(
∀b ∈ B |

(
∃y ∈ Rd |ATy ≥ 0 ∧ bTy < 0

))
⟨(1)⟩

⇔
(
∀b ∈ B |

(
∄x ∈ RnA

+ |Ax = b
))

⟨Farka’s lemma⟩
⇔ (∄c ∈ RnA ,d ∈ RnB |Ac = Bd ̸= 0) ⟨Arithmetic, definition of B⟩

We’ll have to show that (1) is true; while the right implication is trivial:(
∃y ∈ Rd |

(
∀b ∈ B |ATy ≥ 0 ∧ bTy < 0

))
⇒
(
∀b ∈ B |

(
∃y ∈ Rd |ATy ≥ 0 ∧ bTy < 0

))
,

the left one is more subtle:(
∀b ∈ B |

(
∃y ∈ Rd |ATy ≥ 0 ∧ bTy < 0

))
⇒
(
∃y ∈ Rd |

(
∀b ∈ B |ATy ≥ 0 ∧ bTy < 0

))
.

Let A be the convex hull of A. Notice that B can be seen as a convex cone with its vertex being open.
The left term here implicitly tells us that these two convex sets are disjoint. Indeed, any point in B
is linearly separable from A, so there are no point of B in A. Therefore, the Hyperplane separation
theorem tells us that a single hyperplane (parameterized by y) can separate B from A, or in other
words, any point from B from A.
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Corollary 1 (Linear separability criteria - Binary features).
Let A ∈ {0, 1}d×nA × {1}nA , B ∈ {0, 1}d×nB × {1}nB be two sets of points from Rd × {1}. Let
LS(A,B) be true if A and B are linearly separable, and false otherwise. Then:

LS(A,B) ⇔ (∄c ∈ {0, . . . , d− 1}nA ,d ∈ {0, . . . , d− 1}nB |Ac = Bd ̸= 0) .

B Extended details on the approach

Figure 2: Visual representation of the steps for building of a neural network following the CPNet
algorithm.

Figure 2 represents the steps for building a BANN following the CPNet algorithm. The purple
weights and neurons represent the hidden layer and its parameterization; the green weights and
neuron correspond to the output layer. Since we tackle binary classification tasks, the output layer
only has a single neuron and a threshold (indicator) activation function. Indeed, the resulting BANN
has a single hidden layer of size d. Each time a neuron is added, its parameterization is computed so
that it is locally optimal. Then, the output layer weights and bias is updated so that the whole output
layer is optimal at the end of each step.
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