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Abstract

We present a novel progress-sensitive, flow-sensitive hybrid information-flow control monitor for an imperative interactive
language. Progress-sensitive information-flow control is a strong information security guarantee which ensures that a
program’s progress (or lack of) does not leak information. Flow-sensitivity means that this strong security guarantee
is enforced fairly precisely: our monitor tracks information flow per variable and per program point. We illustrate our
approach on an imperative interactive language.

Our hybrid monitor is inlined: source programs are translated, by a type-based analysis, into a target language that
supports dynamic security levels. A key benefit of this is that the resulting monitored program is amenable to standard
optimization techniques such as partial evaluation.

One of the distinguishing features of our hybrid monitor is that it uses sets of levels to track the different possible
security types of variables. This feature allows us to distinguish programs that definitely leak information from those
that may leak information.
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1. Introduction

We increasingly rely on computer systems to safeguard
confidential information, and maintain the integrity of crit-
ical data and operations. But in our highly interconnected
world, these trusted systems often need to communicate
with untrusted parties. Trusted systems risk leaking confi-
dential information to untrusted parties, or allowing input
from untrusted parties to corrupt data or the operation of
the trusted system.

Information-flow control is a promising approach to en-
able trusted systems to interact with untrusted parties,
providing fine-grained application-specific control of con-
fidential and untrusted information. Static mechanisms
for information-flow control (such as security type sys-
tems [1, 2]) analyze a program before execution to de-
termine whether the program’s execution will satisfy the
appropriate information flow requirements. This has low
runtime overhead, but can generate many false positives.
Dynamic mechanisms (e.g., [3]) accept or reject individual
executions at runtime, without performing any static pro-
gram analysis. Dynamic mechanisms can incur significant
runtime overheads. More important, purely dynamic ap-
proaches cannot enforce information flow policies. These
policies are not properties as defined by Schneider in [4],
hence, one cannot decide whether or not the policy is sat-
isfied by observing a single execution. Hybrid information-
flow control techniques (e.g., [5]) combine static and dy-

namic program analysis and strive to achieve the bene-
fits of both static and dynamic approaches: precise (i.e.,
per-execution) enforcement of security, with low runtime
overhead.

In this work, we present a novel progress-sensitive [6],
flow-sensitive hybrid information-flow control monitor for
an imperative interactive language. It is an extension of
the work presented at IFIP SEC 2016 [7]. The key features
of our monitor are as follows.

Our monitor is progress-sensitive: it prevents confiden-
tial information from being leaked via progress channels.
Information leaks through a progress channel when a pro-
gram’s progress (or lack of) depends on confidential infor-
mation and is observable by an adversary. It is a gener-
alization of termination-sensitive information security to
interactive systems (i.e., systems that interact with an ex-
ternal environment at runtime).

Our monitor is flow-sensitive: the security level associ-
ated with program variables may change during the execu-
tion. Flow sensitivity increases precision (as the monitor
is able to accept more programs) but complicates enforce-
ment [8].

Our language has channel-valued variables: communi-
cation channels are constants that can be assigned to pro-
gram variables. This language feature allows realistic com-
munication scenarios to be modelled in our language (e.g.,
where the same code may communicate with users having
arbitrary security levels), but complicates flow-sensitive

Preprint submitted to Computers & Security Friday 18th November, 2016



enforcement of security. Most previous work on language-
based information-flow control require that the channel
used for an input or output operation be statically known,
and allow only a single communication channel per secu-
rity level.

Our monitor is inlined: source programs are translated
into a target language that supports dynamic security lev-
els [9]. The type-based translation inserts commands to
track the security levels of program variables and contexts,
and to control information flow. A key benefit of inlining
the monitor is that the resulting monitored program in the
target language is amenable to standard optimization tech-
niques such as partial evaluation [10]. The instrumented
code is thereby cleaned up so that the residual code tracks
only the security levels of variables that cannot be deter-
mined statically.

Our monitor is hybrid: it uses both dynamic and static
enforcement techniques. The translation to the target lan-
guage performs a static analysis. If the program is stati-
cally determined to be insecure (i.e., it definitely contains
a leak), then the program is statically rejected. Other-
wise, the translation of the program dynamically tracks
the statically unknown security levels of variables, and en-
sures that no leak occurs at runtime.

Our main contributions are as follows.

• We present an extended version of the hybrid moni-
tor first presented in our previous article [7]. The ex-
tension consists in generalizing the flow- and progress-
sensitive enforcement to general lattices. As in the
conference paper, the combination of channel-valued
variables, flow-sensitivity and progress-sensitivity
presents a couple of issues that we have solved.

• The hybrid approach is based on the distinction be-
tween a leak of information that may occur from a
leak that definitely occurs. This distinction is made
possible using sets of security levels.

• We present two additional ideas to increase the pre-
cision of the static analysis and the permissiveness
of the dynamic analysis: propagating constraints on
the set of possible security levels and using condi-
tional updates.

• We prove the soundness of our inlined monitor and
that the semantics of the original program is pre-
served, as long as it is secure.

1.1. Examples
We present several examples of programs in our source

language, to both provide background on information-flow
control, and highlight some of the features of our hybrid
monitor. For simplicity, we assume that the variables
lowValue, highValue, lowChannel, and highChannel exist,
have arbitrary values and have the suggested value secu-
rity levels denoted L, for low, a public value, and H, for
high, a private one.

Explicit and implicit flows. An insecure explicit informa-
tion flow occurs when a confidential value is output to a
public channel. An insecure implicit information flow [11]
occurs when the decision to perform output on a public
channel depends on confidential information. This violates
security because an observer of the public channel will see
whether the output occurred, and might thus learn confi-
dential information. Techniques for tracking and control-
ling implicit and explicit information flow at the language
level are well known [1, 2, 8], and are used in this work.
The following program exhibits both explicit and implicit
information flows, and our approach will reject this pro-
gram statically.

(* insecure explicit flow *)
send highValue to lowChannel;
i f highValue > 0 then

(* insecure implicit flow *)
send 42 to lowChannel

end

Unknown security levels. Our source language supports
variables whose security level could be statically unknown.
Consider the following program, where the output may or
may not be secure, depending on the value of lowValue.

i f lowValue > 0
then d := highChannel
else d := lowChannel

end;
send highValue to d

Listing 1: Statically uncertain channel level

Purely static mechanisms would need to reject this pro-
gram entirely, and indeed, to the best of our knowledge,
all previous work either cannot express this program or
reject it. This is because it would be unsound to statically
treat d as being a private channel, since that might in-
correctly allow private values to be sent to public channel
lowChannel. Similarly, it would be unsound to statically
treat d as a public channel, since that might incorrectly
allow values read from private channel highChannel to be
treated as public values. By contrast, our hybrid approach
recognizes that the security of this program depends on the
runtime value of d, and instruments it to track whether d
refers to a high-security channel or a low-security channel,
in order to intervene only in the latter case. We use sets
of levels in our security types in order to track the differ-
ent possibilities during our static analysis (e.g., d has type
{L,H} after the conditional). To push the permissiveness
a little more, we treat value variables similarly as channel
variables.

Progress channels. The progress of a program, which is
observable through its outputs, can also reveal informa-
tion. For example, in the following program, whether or
not the output on the low-security channel occurs depends
on whether the preceding loop terminates, which in turn
depends on confidential information.
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while highValue > 0 do
skip

end;
send 42 to lowChannel

Listing 2: Progress leak

Although this example leaks only 1 bit of information,
progress channels can be used to leak a significant amount
of information [6]. The most common way to prevent leaks
through progress channels is to forbid loops whose execu-
tion depends on confidential information [12, 13], but it
leads to the rejection of many secure programs, such as
the following.

while highValue > 0 do
highValue := highValue - 1

end; (*loop always terminates *)
send 42 to lowChannel

Listing 3: Loop that always terminates

To accept such programs, we follow Moore et al. [14]
and use an oracle (conservative and assumed correct) to
determine the termination behavior of loops. If the oracle
determines that a loop always terminates (like the one in
Listing 3), then we know that no following output could
leak information through progress channels. On the other
hand, if the oracle says that it may diverge, then we must
take into account the fact that an output following the
loop’s execution could leak information.

In our approach, the oracle is a parameter and is based
on termination analysis methods brought from the litera-
ture such as the one described in Cook et al. [15].

The inlined monitor injects another risk of leak through
progress channels, as it can stop the execution. We treat
this risk in the same way as divergence. We do not take
into account leaks that can occur through timing channels.

Just as the one on channel variables, the permissiveness
on value variables can result in a progress leak. This is
illustrated in the following example, taken from Kozyri et
al. [16].

i f medValue > 0
then x := highValue (*x is H *)
else x := lowValue (*x is L *)

end; (* x is {L,H} *)
"guarded send" x to unknownChannel

(* executed only if there is no leak *)
send 1 to lowChannel

Listing 4: variable level sensitivity

If the unknown channel of the first send command
happens to be of medium security level at runtime and if
the monitor does not halt the execution, then the second
send command would be reached. Then, if the output
to lowChannel occurred, it would leak information about
medValue. To prevent such a leak, we combine previous
work [7] and the dynamic mechanism of Kozyri et al. [16].

1.2. Structure
In Section 2, we present the imperative language used

to illustrate our approach. Section 3 defines the non-
interference property. Section 4 describes our typed-based
instrumentation mechanism, explains the type system, and
presents the target language in which the instrumented
programs are written; it is an extension of the source lan-
guage with dynamic security levels. Section 5 proves that
the instrumented programs are non-interferent. Section 6
presents two ways to increase the precision and permis-
siveness of our monitor. Section 7 is a summary of related
work. Finally, we conclude in Section 8.

2. Source language

Source programs are written in a simple imperative
language with commands for receiving and sending infor-
mation.

We suppose that the interaction of a program with its
environment (which can be a user or another program)
is done through channels. Channels can be, for exam-
ple, files, users, network channels, keyboards, computer
screens, etc. The security levels of these channel constants
are designated in advance by some security administrator.
This is more realistic than requiring someone to manually
define the level of every variable of the program; their level
are instead given before the analysis and the execution as
parameters. It also means that a program will not have
to be rewritten if the privacy level of a channel changes
over time: the analysis can be applied on the same pro-
gram with the updated security levels for channels. The
program has to be rewritten only if a flaw is detected.

2.1. Syntax
Let V be a set of identifiers for variables, and C a set

of predefined communication channels. The syntax is as
follows.

(variables) x ∈ V ∪C
(integer constants) n ∈ Z
(expressions) e ::= x | n | e1 op e2 | read x
(commands) cmd ::=

skip | x := e | if e then cmd1 else cmd2 end |
while e do cmd end | cmd1; cmd2 | send x1 to x2

Values are integers (we use zero for false and nonzero
for true), or channel names. The symbol op stands for
arithmetic or logic binary operators on integers. We write
Exp for the set of expressions.

The core language is a standard imperative language.
The expression read x returns the current value in channel
x (without modifying it). Command send x1 to x2 sends
the value of variable x1 to channel x2 and overwrites the
current value in the channel. In other words, it outputs
the value of x1 to channel x2. Without loss of generality,
we consider that each channel consists of one value, it is
easy to generalize to a channel consisting in a sequence of
values.
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(Skip) 〈skip,m, o〉−→〈stop,m, o〉

(Assign)
m(e) = r

〈x := e,m, o〉−→〈stop,m[x 7→ r], o〉

(Send)
m(x1) = v ∈ Z m(x2) = ch ∈ C

〈send x1 to x2,m, o〉−→〈stop,m[ch 7→v], o :: (v, ch))〉

(Seq1)
〈cmd1,m, o〉−→〈stop,m′, o′〉

〈cmd1; cmd2,m, o〉−→〈cmd2,m
′, o′〉

(Seq2)
〈cmd1,m, o〉−→〈cmd ′

1,m
′, o′〉 cmd ′

1 6= stop

〈cmd1; cmd2,m, o〉−→〈cmd ′
1; cmd2,m

′, o′〉

(If)
m(e) 6= 0 =⇒ i = 1 m(e) = 0 =⇒ i = 2

〈if e then cmd1 else cmd2 end,m, o〉−→〈cmd i,m, o〉

(Loop1)
m(e) 6= 0

〈while edo cmd end,m, o〉−→〈cmd ;while edo cmd end,m, o〉

(Loop2)
m(e) = 0

〈while e do cmd end,m, o〉−→〈stop,m, o〉

Figure 1: Semantics of the source language

2.2. Semantics
A memorym : V]C → Z]C is a partial map from vari-

ables and channels to values, where the value of a channel
is the last value sent to this channel. More precisely a
memory is the disjoint union of two (partial) maps of the
following form:

mv : V → Z ] C, mc : C → Z,

where ] stands for the disjoint union operator. We omit
the subscript whenever the context is clear. We write
m(e) = r to indicate that the evaluation of expression
e under memory m returns r.

The semantics of the source language is mostly stan-
dard and is illustrated in Figure 1. Program configurations
are tuples 〈cmd ,m, o〉 where cmd is the command to be
evaluated, m is the current memory and o is the current
output trace. A transition between two configurations is
denoted by the −→ symbol. We write −→∗ for the reflex-
ive transitive closure of the −→ relation.

We write v :: vs for sequences where v is the first
element of the sequence, and vs is the rest of the se-
quence. We write ε for the empty sequence. An output
trace is a sequence of output events: it is of the form
o = (v0, ch0) :: (v1, ch1) :: . . . where vk ∈ Z is an integer
value, and chk is a channel, k ∈ N. The rule for sending a
value appends a new output event to the end of the trace.
We abuse notation and write o :: (v, ch) to indicate event
(v, ch) appended to trace o.

We write 〈cmd ,m, ε〉 ↓ o if execution of configuration
〈cmd ,m, ε〉 can produce trace o, where o may be finite

or infinite. For finite o, 〈cmd ,m, ε〉 ↓ o holds if there is
a configuration 〈cmd ′,m′, o〉 such that 〈cmd ,m, ε〉 −→∗
〈cmd ′,m′, o〉. For infinite o, 〈cmd ,m, ε〉 ↓ o holds if for
all traces o′ such that o′ is a finite prefix of o, we have
〈cmd ,m, ε〉 ↓ o′.

3. Security

For our purposes, we assume a finite lattice of security
levels (L,v) which contains at least two elements: L for
the bottom of the lattice and H for the top of the lattice,
i.e. ∀` ∈ L, L v ` ∧ ` v H . We define an execution
as `-secure if the outputs to a channel of level ` do not
reveal any information about the inputs of channels that
are not lower than or equal to `. This is a standard form
of non-interference (e.g., [1, 2]) adapted for our particular
language model.

Before formally defining non-interference, we first in-
troduce some helpful technical concepts. The projection
of trace o to security level `, written o�`, is its restriction
to output events whose channels’ security levels are less
than or equal to `. Formally,

ε�` = ε

((v, ch) ::o)�` =

{
(v, ch) :: (o�`) if levelOfChan(ch) v `
o�` otherwise

where levelOfChan(ch) denotes the security level of chan-
nel ch (typically specified by the administrator).

We say that two memories m and m′ are `-equivalent if
they agree on the content of variables (including channel
variables) whose security levels are ` or lower.

Definition 1 (Progress-sensitive non-interference) We say
that a program p satisfies progress-sensitive non-interference
if for any ` ∈ L, and for any two memories m and m′ that
are `-equivalent, and for any trace o such that 〈p,m, ε〉 ↓ o,
then there is some trace o′, such that 〈p,m′, ε〉 ↓ o′ and
o�` = o′ �`.

This definition of non-interference is progress-sensitive
in that it assumes that an observer can distinguish an exe-
cution that will not produce any additional observable out-
put (due to termination or divergence) from an execution
that will make progress and produce additional observable
output. Progress-insensitive definitions of non-interference
typically weaken the requirement that o�` = o′ �` to in-
stead require that o�` is a prefix of o′ �`, or vice versa.

Among the previously presented examples, only List-
ing 3 satisfies progress-sensitive non-interference. Never-
theless, we accept the program of Listing 1, since we trans-
form it to a program that does satisfy progress-sensitive
non-interference.

4. Type-based instrumentation

We enforce non-interference by translating source pro-
grams to a target language that enables the program to
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track the security levels of its variables. The translation
performs a type-based static analysis of the source pro-
gram, and rejects programs that definitely leak informa-
tion (i.e., the translation fails).

In this section, we first present the security types for
the source language (in order to provide intuition for the
type-directed translation) followed by the description of
the target language, which extends the source language
with runtime representation of security levels. We then
present the translation from the source language to the
target language.

4.1. Source language types
Source language types are defined according to the fol-

lowing grammar. The security types are defined as follows:

(security labels, Lab) ` ::= P(L) \ {∅}
(value types, ValT ) σ ::= int` | int` chan
(variable types, VarT ) τ ::= σ`

Security labels are non-empty sets of security levels. They
represent the possible security levels of a variable at run-
time. If a security label contains more than one element,
it means that its security level is statically unknown. For
example, variable x of Listing 5 would be labeled {L,H}
after the if command as it could contain information of
either level at runtime.

i f lowValue then
x := read lowChannel

else
x := read highChannel

end;
send x to lowChannel

Listing 5: Variable of an uncertain level

We derive two order relations that allow us to deal with
the sets of possible levels.

Definition 2 The relations vs, surely less than, and vm,
maybe less than, are defined as follows

`1 vs `2 ∀e1 ∈ `1, e2 ∈ `2.e1 v e2.
`1 vm `2 ∃e1 ∈ `1, e2 ∈ `2.e1 v e2.

Intuitively, we have ` vs `′ when we can be sure stat-
ically that ` v `′ will be true at runtime, and we have
` vm `′ when it is possible that ` v `′ at runtime.

Definition 3 The supremum and infimum on sets of levels
are defined as follows

`1 t `2 = {e1 ∈ `1, e2 ∈ `2.e1 t e2}
`1 u `2 = {e1 ∈ `1, e2 ∈ `2.e1 u e2}

Value types are the types of integers and channels.
Type int` is the type of integers whose values are of se-
curity level `, and type int` chan is the type of a channel
whose values are of security level `.

Variables types associate a security level with a value
type. Intuitively, σ`′ represents the type of a variable
whose value type is σ, and whose variable type is `′, the
latter is an upper bound of the information level influenc-
ing the value of the variable. When a variable type ` is
associated with a value type ` for a channel, it means that
the sensitivity of the content of the channel is `′, and the
sensitivity of the channel itself is `. This approach was
used by [7]. When a variable type ` is associated with a
value type `′ for an integer, it means that the sensitivity
of the integer is `′, and the sensitivity of `′ is `′. This ap-
proach was used in [16] to prevent leakage through guarded
sends.

Consider the program in Listing 1, page 2. Immedi-
ately following the conditional command, the type system
gives variable d the type (int{L,H} chan){L}. This type
reflects that only low information determines which chan-
nel is assigned to d (i.e., variable lowValue determines d’s
value), and whether d is a low channel or a high channel
is statically unknown.

A similar situation occurs in Listing 4, page 3. Im-
mediately following the conditional command, the type
system gives variable x the type (int{L,H}){M}. This type
reflects that an information of medium level determines
which value is assigned to x (i.e., variable medValue de-
termines x’s value), and that the information contained
within x is either of low security level or of high security
level. It is necessary to keep track of the context level in
which x has been assigned its value. This information is
used to halt the execution of the second send and prevent
observers from deducing that medValue is less or equal to
0.

We instrument source programs to track at runtime
the security levels that are statically unknown. In order
to track these security levels, our target language allows
their runtime representation.

4.2. Sets of levels
We use sets of levels not only to increase the preci-

sion of the analysis, but also because we have to due to
our use of channel variables. Indeed, one of the issues
that we encountered is the fact that we cannot conserva-
tively approximate the level of a channel variable, due to
Bell-Lapadula’s principle of no write down, no read up.
Listing 6 illustrates why.

i f lowValue > 0 then
d := lowChannel

else
d := highChannel

end
send highValue to d (* Pessimist: d is L*)
x := read d (* Pessimist: d is H*)
send x to lowChannel

Listing 6: We cannot be pessimistic about channel variables

After the conditionals, d has type (int{L,H}chan){L} be-
cause it contains either a low or high channel and its value
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is assigned in a context of level L. Our typing system ac-
cepts this program, but makes sure that a runtime check
is inserted. If the condition lowValue > 0 happens to be
true at runtime, then there is no leak. If it is false, the
program will be rejected, thanks to the inserted runtime
check controlling the send command. The uncertainty is
unavoidable in the presence of flow sensitivity and channel
variables. Indeed, we point out that we cannot be pes-
simistic about the level of d in this program. The output
command suggests that a safe approximation for d would
be a low security level. Yet, the input command suggests
that a safe approximation for d would be a high security
level, which contradicts the previous observation.

Consequently, in order to accept the program in List-
ing 6, we chose to use sets of security levels. As a conse-
quence, we will obtain fewer false positives as we do not
consider the worst possible case in our analysis, we leave
it to the execution to check whether the information flow
turns out to be secure or not.

4.3. Syntax and semantics of target language
Our target language is inspired by the work of Zheng

and Myers [9], which introduced a language with first-class
security levels, and a type system that soundly enforces
non-interference in this language. The syntax of our tar-
get language is defined as follows. The main difference
with the source language is that it adds support for level
variables (regrouped in the set Vlevel), a runtime represen-
tation of security levels.

(variables) x ∈ V ∪ C
(level variables) x̃ ∈ Vlevel
(integer constants) n ∈ Z
(basic levels) k ∈ L
(level expressions) ` ::= k | x̃ | `1 t `2
(integer expressions) exp ::= x | n | exp1 op exp2 |

readx
(expressions) e ::= exp | `
(commands) cmd ::=

skip | (x1, . . . , xn) := (e1, . . . , en) |
if e then cmd1 else cmd2 end | cmd1; cmd2 |
while e do cmd end | send x1 to x2 |
if `1 v `2 then (sendx1 tox2) else fail end

Dynamic types will allow a verification of types at run-
time: this is the goal of the new send command, nested
in a conditional – call it a guarded send – that permits to
check some conditions on security levels before sending a
given variable to a channel. If the check fails, the program
aborts.

For simplicity, we assume that security levels can be
stored only in a restricted set of variables Vlevel ⊆ V. Thus,
the variable part mv of a memory m now has the following
type

mv : (Vlevel → L) ] (V \ Vlevel → Z ] C)

Furthermore we assume that Vlevel contains variables
_pc and _hc, and two level variables xval and xctx associ-
ated with each variable x ∈ V \ Vlevel . They are used to
track the security levels of variables at runtime. For exam-
ple, if x is a channel variable of security type (int` chan)`′ ,
then the values of these variables should be xval = ` and
xctx = `′ (this will be ensured by our instrumentation).
Variables _pc and _hc hold the security levels of the con-
text and halting context respectively, they represent the
security level in which a command is executed.

The simultaneous assignment (x1, . . . , xn) := (e1, . . . , en)
is introduced for the sake of clarity. Any assignment im-
plies an immediate update of the concerned level variables.
For all common commands, the semantics of the target
language is the same as in the source language.

4.4. Instrumentation as a type system
Our instrumentation algorithm is specified as a type

system in Figure 2. Its goal is to inline monitor actions
in the program under analysis, thereby generating a safe
version of it, or to reject it when it contains obvious leaks
of information. The inlined actions are essentially updates
of level variables and checks on these variables in order
to control the execution of potentially leaking send com-
mands. After a check, a send command is either executed
if it is safe or its execution is prevented and the program
is aborted.

The typing rules of variables and constants have judge-
ments of the form Γ ` e : σ`, stating that σ` is the type of
e under the typing environment Γ. The instrumentation
judgements are of the form

Γ, pc, hc ` cmd : t, h,Γ′, [[cmd ]]

where Γ,Γ′ : V ] C → VarT are typing environments (ini-
tially empty), cmd is the command under analysis, pc is
the program context, hc is the halting context, t is the
termination type of cmd , h is the updated halting con-
text, and [[cmd ]] is the instrumented command. The latter
is often presented using a macro whose name starts with
gen. The program context, pc, is used to keep track of the
security level in which a command is executed, in order
to detect implicit flows. The halting context, hc, is used
to detect progress channels leaks. It represents the level
of information that could have caused the program to halt
(due to a failed guarded send command) or diverge (due
to an infinite loop). In other words, it is the level of infor-
mation that could be leaked through progress channels by
an output. The termination t of a command is propagated
in order to keep the halting context up to date. We dis-
tinguish three termination types T = {T,D,M`}, where
T means that a command terminates for all memories, D,
diverges for all memories, M` means that a command’s
termination is unknown statically; the subscript is used to
indicate on which level(s) the termination depends. For
example, the termination of the loop in Listing 2 is M{H}
because it can either terminate or diverge at runtime, and
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(S-Chan)
levelOfChan(nch) = `

Γ ` nch : (int{`} chan){L} (S-Int) Γ ` n : (int{L}){L}

(S-Var)
Γ(x) = τ

Γ ` x : τ

(S-read)
Γ ` c : int` chan`c

Γ ` read c : (int`)`c

(S-Op)
Γ ` e1 : (int`1)`′1 Γ ` e2 : (int`2)`′2

Γ ` e1 op e2 : (int`1t`2)`′1t`′2

(S-Skip)
Γ, pc, hc ` skip : T, hc,Γ, skip

(S-Assign)
Γ ` e : σ`′e

Γ, pc, hc ` x := e : T, hc,Γ[x 7→ σpct`′e ], genassign

(S-Send)
Γ(x) = (int`x)`′x Γ(c) = (int`c chan)`′c (pc t hc t `x t `′x t `′c) vs `c

Γ, pc, hc ` send x to c : T, hc,Γ, send x to c

(S-GSend)

Γ(x) = (int`x)`′x
Γ(c) = (int`c chan)`′c (pc t hc t `x t `′x t `′c) 6vs `c (pc t hc t `x t `′x t `′c) vm `c

Γ, pc, hc ` send x to c : T, pc t hc t `′x t `′c,Γ, gengsend

(S-If)

Γ ` e : (int`e)`′e pc′ = pc t `e t `′e hd = hasGSend({cmd1, cmd2}, pc′)
h =

⋃
j∈{1,2}

(hj t hd t level(t1 ⊕pc′ t2)) Γ, pc′, hc ` cmd j : tj , hj ,Γj , [[cmd j ]] j ∈ {1, 2}

Γ, pc, hc ` if e then cmd1 else cmd2 end : t1 ⊕pc′ t2, h,Γ1 tpc′ Γ2, genif

(S-Loop1)

Γ = Γ tpc′ Γ′ Γ ` e : (int`e)`′e O(e, cmd ,Γ) = to pc′ = pc ∪ (pc t `e t `′e)
hc′ = hc ∪ (hc t level(t′) t h′) hd = hasGSend({cmd}, pc′) Γ, pc′, hc′ ` cmd : t′, h′,Γ′, [[cmd ]]

Γ, pc, hc ` while e do cmd end : to, hd t h′ t level(to),Γ tpc′ Γ′, genwhile

(S-Loop2)

Γ 6= Γ tpc′ Γ′ Γ ` e : (int`e)`′e Γ, pc t `e t `′e, hc ` cmd : t′, h′,Γ′ pc′ = pc ∪ (pc t `e t `′e)
hc′ = hc ∪ (hc t level(t′) t h′) Γ′, pc′, hc′ ` while e do cmd end : to, h

′′,Γ′′, instCode

Γ, pc, hc ` while e do cmd end : t′′, h′′,Γ′′, instCode

(S-Seq1)
Γ, pc, hc ` cmd1 : D,h,Γ1, [[cmd1]]

Γ, pc, hc ` cmd1; cmd2 : D,h,Γ1, [[cmd1]]
(S-Seq2)

t1 6= D Γ, pc, hc ` cmd1 : t1, h1,Γ1, [[cmd1]]
Γ1, pc, h1 ` cmd2 : t2, h2,Γ2, [[cmd2]]

Γ, pc, hc ` cmd1; cmd2 : t1 o
9 t2, h2,Γ2, [[cmd1]]; [[cmd2]]

Figure 2: Instrumentation and typing rules for the source language
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this depends on information of level H. The loop in List-
ing 3 on the other hand is of termination type T because,
no matter what the value of h is, it will always eventually
terminate. Similarly, a loop whose condition is always true
will have termination type D since it always diverges. Re-
call that, of course, the precision of this analysis depends
on the precision of the oracle.

The instrumentation of a program p begins by inserting
commands to initialize a few level variables: _pc, _hc are
initialized to L, as well as the level variables xctx and xval
for each variable x ∈ V appearing in p. Similarly, level
variables cctx and cval associated with each channel c used
in p are also initialized, but the latter rather gets initialized
to levelOfChan(c), which is an input parameter for the
analysis. After the initialization, the instrumentation is
given by the rules of Figure 2. We now explain these rules.

Rules (S-Chan) and (S-Int) specify the type of chan-
nel and integer constants respectively.

Rule (S-Var) infers the type of a variable from the
environment Γ.

Rule (S-Op) infers the type of an expression from the
types of its operands and it reflects the fact that operations
on channels are not allowed.

Rule (S-Read) returns the security type of the current
value in channel c.

Rule (S-Assign) updates the type of x in the environ-
ment as the supremum of the type of e (to prevent explicit
flows) and the type of pc (to prevent implicit flows). Its
instrumentation is given by the following macro, which
represents a simultaneous assignment x := e, xval := eval,
and xctx := ectx t_pc.
genassign =

(x, xval, xctx) := (e, eval, ectx t_pc)

We write ectx to represent the expression made of the
supremum of variables appearing in expression e. For ex-
ample if e = x+read c, then ectx = xctxt cctx. If e = x+y
then ectx = xctx t yctx. The idea is the same for eval.

Rule (S-Send) checks whether a send command is stat-
ically safe by requiring (pc t hc t `x t `′x t `′c) vs `c (i.e.,
all possible values of the left-hand side are always lower or
equal to the right-hand side). The variables on the left-
hand side correspond to the level of information that can
be revealed by the output to c. If so, the instrumentation
inserts the send command as it is.

Rule (S-GSend) checks whether a send command may
be safe, by requiring (pc t hc t `x t `′x t `′c) vm `c. The
instrumentation then transforms it into a guarded send, as
follows

gengsend =
i f _pc t _hc t xval t xctx t cctx v cval then

(send x to c)
else

f a i l
end;
_hc := _pc t _hc t xctx t cctx;

The halting context must record the possible failure of

a guarded send at runtime, and hence, it is updated with
the level of information that influences its success/failure.
Particularly, the halting context is updated with the sen-
sitivity of the context and of the two variables involved,
the channel variable [7] and the regular variable [16]. For
example, Listing 7 shows why cctx must be included in this
update.

i f unknownValue > 0 (*H at runtime *)
then c := lowChannel
else c := highChannel

end;
send highValue to c (* guarded send*)
send lowValue to lowChannel

Listing 7: Dangerous runtime halting

Assume that unknownValue is high and false at runtime.
Then the first guarded send is accepted, but allowing an
output on a low security channel subsequently would leak
information about unknownValue. This is because, had
unknownValue been true, then the first send would have
failed. However, c has level int{L,H}chan{H} after the
conditional. Updating _hc with cctx will affect the check
of all subsequent guarded send and prevent such leaks.

If none of the send rules can be applied, it means that
the program under analysis contains a send command that
always leaks information and so, the program is rejected.

Before explaining the rules for composed commands,
we first define a few functions and operators. For the con-
ditional rules, we need a supremum of environments.

Definition 4 The supremum of two environments is given
as dom(Γ1 tpc Γ2) = dom(Γ1) ∪ dom(Γ2), and

(Γ1 tpc Γ2)(x) =

Γi(x) if x ∈ dom(Γi)\dom(Γj),
{i,j}={1,2} ∨ Γ1(x) = Γ2(x)

(int`1∪`2chan)(`′1∪`′2)tpc if Γ1(x) = (int`1 chan)`′1
∧Γ2(x) = (int`2 chan)`′2
∧Γ1(x) 6= Γ2(x)

(int`1∪`2)(`′1∪`′2)tpc if Γ1(x) = (int`1)`′1∧
Γ2(x) = (int`2)`′2∧
Γ1(x) 6= Γ2(x)

Error otherwise.

When a typing inconsistency occurs, e.g., when a vari-
able is used as an integer in one branch and as a channel
in another, the analysis stops and an error is returned,
causing the program to be rejected.

The function level : T → P(L) \ {∅} returns the ter-
mination level (i.e., the level that the termination depends
on) and is defined as:

level(t) =

{
{L} if t ∈ {T,D}
` if t = M`

Two operators are used to compose terminations types,
⊕, used in the typing of conditionals, and o

9, used in the
typing of sequences. They are defined as follows.
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t1 ⊕pc t2 =

 t1 if t1 = t2 ∈ {T,D}
Mpct(`1∪`2) otherwise,

`1 = level(t1), `2 = level(t2)

t1 o
9 t2 =


M`1t`2 if t1 = M`1 and t2 = M`2

ti if tj = T, {i, j} = {1, 2}
D otherwise

The following example illustrates the use of these opera-
tors:

i f highValue then
while 1 do skip end (* D *)

else
skip (* T *)

end

The termination type of an if command is computed using
the ⊕ operator, from three parameters: the termination
types of each of the two branches and the security level
of the guard condition. Hence, in this example, we obtain
D ⊕H T = M{H}.

One more function needs to be defined. Its motivation
is given by the following example. Assume that in Listing 8
unknownChannel turns out to be a low channel at runtime.
If the last send command is reached and executed it would
leak information about highValue. The same leak would
happen if instead of the guarded send we had a diverging
loop.

i f highValue > 0 then
i f ` v `′

then send highValue to unknownChannel
else f a i l end;

end;
send lowValue to lowChannel

Listing 8: A guarded send can generate a progress leak

To prevent this kind of leak, we verify if the branches
of a conditional contains guarded send commands using
the function

hasGSend : P(Cmd)× Lab→ Lab,

where Cmd is the set of commands and Lab the set of
security labels. If one of the commands given in parameter
contains a guarded send, then it returns the security label
given in parameter, otherwise L is returned. This function
is used to update the halting context to pc when there is a
risk that one of the branch halts the execution. Without
this update, hc could leak information about the condition
in a subsequent send.

(S-If) When typing an if command, we type the two
branches under pc′, which is the supremum of the con-
ditional’s guard expression and current context. The re-
sulting typing environments, Γ1 and Γ2, then contain the
security levels that variables may have after executing the
first or second branch. The typing environment returned

by the if is the join of those two, defined in Definition 4,
so that it contains the possibilities of both branches. Sim-
ilarly, variable h is used to calculate the possible values
that the halting context may have after the conditional,
hence the union.

Its instrumentation is given by the following macro:

genif = _oldpcν := _pc;
i f e then
_pc:=_pc t eval t ectx;
[[cmd1]];
update(mv2)
else

_pc:=_pc t eval t ectx;
[[cmd2]];
update(mv1)
end;
_pc := _oldpc

where update is defined as follows

update(mv) =
if mv = ∅ skip;
else
for each x ∈ mv xctx := xctx t_pc;
if _hc ∈ mv _hc := _hc t_pc;

and where tj is the termination type of cmd j , mvj is the
set of modified variables in cmd j (we include _hc in this
set if the termination of the two branches can differ i.e. if
¬(t1 = t2 ∈ {T,D}) or if at least one guarded send occurs
in the other branch), and evaltectx is the guard condition’s
level expression.

The instrumented code starts by saving the current
context to _oldpcν (the symbol ν indicates that it is a
fresh variable). The program context is updated with the
security level of the guard condition. The if itself is then
generated.

The function update generates the command skip; if the
parameter set mv is empty otherwise it generates updates
of the context level of each modified variable in the other
branch as well as the update of _hc if necessary. The
underlying reason is to ensure that the value of these level
variables is at least pc.

In a situation like the following listing, this function
allows to update x’s level, to protect unknownValue.

x := 0;
i f unknownValue then (*H at runtime *)

x := 1
else skip end;
send x to lowChannel

Listing 9: Modified variables

Here, even if the else branch is taken at runtime, the level
of variable x must be updated. Otherwise, information
about unknownValue would be revealed by the send com-
mand (even with a guarded send).

(S-Loop1), (S-Loop2) rules specify the while com-
mand typing. They involve computing a fixed point to
derive the right typing environment. This is necessary
because of the flow sensitivity feature. Typing rule (S-
Loop2) is applied recursively until a fixpoint is found,
at which point (S-Loop1) is applied and its result is re-
turned. The union operator is used to update the pc′ and

9



hc′ variables so that we keep track of all their possible val-
ues. Due to our use of finite lattices, and the monotonicity
of the union and supremum on levels, it is easy to show
that this computation converges, the proof is given in Ap-
pendix B, Lemma 7. The typing relies on O, an oracle
that returns the termination type of the loop (to). It is
worth noting that the call to the oracle is performed stati-
cally. Calling it dynamically would enhance precision, but
increase significantly the overhead. If the loop contains
guarded send commands, which could fail and reveal in-
formation about the condition of the loop, then we update
the halting context to prevent this leak. The presence of
at least one guarded send command is detected using the
function hasGSend().

genwhile = _oldpcν := _pc;
while e do
_pc := _pc t eval t ectx;
[[cmd ]];

end;
_pc := _pc t eval t ectx;
update(mv);
_pc := _oldpc

The inserted commands are similar to those of the if com-
mand. The level variables and halting context are updated
after the loop in case an execution does not enter the loop.
The context needs to be updated at the begining of each
iteration as the value, and hence level, of expression e may
change.

(S-Seq1) is applied if cmd1 always diverges; we then
ignore cmd2, as it will never be executed. Otherwise, (S-
Seq2) is applied. The halting context returned is h2 in-
stead of h1 t h2 because h2 already takes into account h1.

Examples of instrumented programs are available in
Appendix A.

5. Soundness

In order to prove that the instrumented program gen-
erated by Figure 2 correctly enforces non-interference, we
need to adapt the definitions of non-interference and `-
equivalent memories to our target language, because of
level variables. Recall that a memory for the target lan-
guage is the union of two maps of the following form:

mv : (Vlevel → L) ] (V \ Vlevel → Z ] C),
mc : C → Z.

We write doml(m) := dom(mv) ∩ Vlevel = m−1v (L). A
memory m is called complete for a program p if

• {xval, xctx} ⊆ doml(m) for any x ∈ C∪dom(m)\Vlevel
that appears in p.

• _pc and _hc are in doml(m)

• if c ∈ C appears in p, thenmv(cval) = levelOfChan(c)
and mv(cctx) = L

• if m(x) ∈ C then mv(xval) = levelOfChan(m(x)).

The first two conditions ensure that level variables exist
in the domain of the memory, whereas the last ones makes
sure that it is compliant with the security policy for chan-
nels.

The definition of `-equivalent memories, which is based
on [16], must handle level variables. Whenever the level
variable xctx corresponding to a variable x is such that
m(xctx) v ` in one memory, then it must have the same
value in both memories, otherwise a leak can happen.

Definition 5 `-equivalent memories. We say that two
complete memories of the target language m1 and m2 are
`-equivalent, written m1 ≡` m2, iff they satisfy the follow-
ing properties

1. if mi(_pc) v ` for some i ∈ {1, 2}, then m1(_pc) =
m2(_pc). The same property holds for _hc.

2. x ∈ m−1i,v (Z ∪ C),∧mi(xctx) v `, for some i = 1, 2,
then

• m1(xctx) = m2(xctx)

• m1(xval) = m2(xval)

• if m1(xval) v` then m1(x)=m2(x)

3. c ∈ C ∧ levelOfChan(c) v `⇒ m1c(c) = m2c(c)

It may seem surprinsing that the memories may differ
on a level variable such as xval; this is because they may
differ on the value of high variables. Too see this, here is
a variation of Listing 1.

i f highValue > 0
then d := highChannel
else d := lowChannel

end;

Listing 10: The security type of d’s content is sensible

In this example, the content of d depends on a private
condition, and hence its level variable dctx should be H;
moreover, variable dval, containing the level of the content
of d, may have different values in two `-equivalent memo-
ries. Another example, for non-channel variables, is List-
ing 4, reproduced below (and taken from Kozyri et al. [16]),
where medValue has security level M , with L vM v H.

i f medValue > 0
then x := highValue (*x is H *)
else x := lowValue (*x is L *)

end; (* x is {L,H} *)
send x to unknownChannel
send 1 to lowChannel

In this example, variable xval contains information of level
M . If unknownChannel turns out to be of level M at execu-
tion then reaching or not the last send command will de-
pend on xval. The program will be blocked or not, and this
will reveal which branch was taken in the preceding condi-
tional. Interestingly, this problem does not arise when the
lattice is restricted to only two levels, {L,H}, as argued
in Kozyri et al.
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Here is the definition of non-interference for the tar-
get language. The difference from Definition 1 is the re-
quirement of the memories to be complete and the use of
Definition 5.

Definition 6 Progress-sensitive non-interference. We say
that a program p satisfies progress-sensitive non-interference
if for any ` ∈ L, and for any two complete memories m
and m′ that are `-equivalent, and for any trace o such
that 〈p,m, ε〉 ↓ o, then there is some trace o′, such that
〈p,m′, ε〉 ↓ o′ and o�` = o′ �`.

Using these updated definitions, we prove that the in-
strumented programs are non interferent.

Theorem 1 (Soundness of enforcement) If a program p is
well typed according to the type system of Figure 2, then
the generated program [[p]] satisfies progress sensitive non-
interference.

We also show that the instrumentation preserves the
semantics of the original program. That is, the instru-
mentation of a program p, written [[p]], produces exactly
the same output as p as long as it is allowed to continue;
it may be stopped at some point to prevent a leak. If m
is a memory for the target language we write m̂ for the
restriction of m to V \ Vlevel .

Theorem 2 (Semantics preservation) Let p be a program,
m a memory, and o, o′ output traces. Then

〈[[p]],m, ε〉 ↓ o⇒ 〈p, m̂, ε〉 ↓ o
(〈p, m̂, ε〉 ↓ o ∧ 〈[[p]],m, ε〉 ↓ o′)⇒ o � o′ ∨ o′ � o

where o′ � o means that o′ is a prefix of o.

The proofs are available in Appendix B.

6. Increasing precision and permissiveness

During the course of this work, we thought of two ways
to improve the precision of our static analysis and permis-
siveness of our dynamic analysis. While we chose not to
use them into this work (to keep things as simple as pos-
sible), we think they are worth pointing out.

6.1. Security type constraints
In Listing 12, only executions where c is a high channel

will get past the first guarded send. For this reason, we
can consider, for the rest of the analysis, that its type is
int{H}chan{L} instead of int{L,H}chan{L}.

i f lowValue > 0 then
c:= lowChannel

else
c:= highChannel

end;
send highValue to c; (*will be transformed

into a guarded send*)
(*to reach here , c must be {H}*)

x := read c; (*so x is {H}*)
send x to lowChannel (* always leaks , so
statically rejected *)

Listing 12: Constraint on the security type of a channel variable

The same idea applies to integer variables. For exam-
ple, we know that the instructions after the first send of
Listing 13 will only be reached if variable x is low. For this
reason, we can consider that x’s type after the send will
be (intL){L} instead of (int{L,H}){L}.

i f lowValue > 0 then
c := lowChannel

else
c := highChannel

end;
x := read c; (*x is {L,H}*)
send x to lowChannel; (*will be
transformed into a guarded send*)

(*to reach here , x must be {L}*)
send x to lowChannel (*no need to
transform into a guarded send*)

Listing 13: Constraint on the security type of an integer
variable

Using these constraints in our static analysis would in-
crease the detection rate of programs that definitely leak
information, rather than having them fail at runtime.

6.2. Conditional updates of the halting context
While we chose to always update the halting context

_hc after a guarded send with

_hc := _pc t_hc t xctx t cctx,

there are cases where we can be more precise. One such
case is illustrated in Listing 14.

i f medValue then
x := read highChannel

else
x := read highChannel2

end;
send x to unknownChannel; (* guarded send*)
send lowValue to lowChannel

Listing 14: Example where _hc does not need to be updated
with xctx

In this example, while x’s value may differ, its type
is constant and equal to (int{H}){M}. Since the value of
medValue does not affect its type, it means that it has no
influence on the guarded send’s decision to block or allow
the output. Hence, in this case, the update to _hc variable
after the guarded send does not need to include variable
xctx.

Similarly, when a channel c whose type is constant is
used in a guarded send command, the update to _hc does
not need to include variable cctx.

Hence, using conditional updates would allow the dy-
namic analysis to be more permissive as the updates to
_hc are less conservative.
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7. Related work

There has been much research into language-based tech-
niques for controlling information flow over the last two
decades. In this section, we focus on hybrid techniques for
information-flow control.

Hybrid techniques are attractive as they have the po-
tential to offer the advantages of both static and dynamic
analyses: the low runtime overhead of static approaches
combined with the precision and flexibility of dynamic
techniques.

Le Guernic et al. [5] present the first hybrid information-
flow control monitor. The enforcement is based on a mon-
itor that is able to perform static checks during the exe-
cution. The enforcement is not flow-sensitive. Le Guer-
nic, in [17], extends this work to concurrent programs.
Russo and Sabelfeld [8] generalize their work, presenting
a series of hybrid monitors that differ on the action to
perform in the event of a security violation. They also
state that purely dynamic enforcements are more permis-
sive than purely static enforcements but they cannot be
used in case of flow-sensitivity. They propose a hybrid
flow-sensitive enforcement based on calling static analysis
during the execution. This enforcement is not progress
sensitive.

Kozyri et al. [16] show that it is not trivial to design dy-
namic enforcement mechanisms that support general lat-
tices and do not leak information through termination. In
particular, they show that labels on labels are necessary
for lattices with more than two elements, but that two
levels of labels is enough.

Bedford et al. [18] generate instrumented code, en-
forcing information flow based on static analysis (i.e., an
information-flow monitor is inlined). The approach sup-
ports channel variables and is flow sensitive, but does not
take into account leaks due to progress. Also, the inlined
monitor does not use dynamic security levels, but employs
a heavy-handed approach which is not as amenable to
standard optimization techniques as the present one. The
target language is not formally defined and no soundness
proof of the instrumented code is provided.

Moore et al. [14] consider precise enforcement of flow-
insensitive progress-sensitive security. Progress sensitivity
is also based on an oracle’s analysis, but they call upon
it dynamically while we do it statically. We have also
introduced additional termination types to increase the
permissiveness of the monitor.

Chudnov and Naumann [19] inline a flow-sensitive hy-
brid monitor (based on a monitor of Russo and Sabelfeld
[8]) and extend it to Javascript [20]. They prove its sound-
ness by showing that the execution of the inlined monitor is
bisimilar to the execution of a non-inlined monitor. We in-
line a flow-sensitive progress-sensitive hybrid monitor and,
as we did not have already have a non-inlined monitor, we
proved its soundness by showing that the output traces
produced by two `-equivalent executions will always be
the same. Magazinius et al. [21] present on-the-fly inlining

of a dynamic information security monitor. We speculate
that we could extend their ideas to allow on–the fly instru-
mentation.

Askarov and Sabelfeld [22] use hybrid monitors to en-
force information security in dynamic languages. In this
setting, dynamic evaluation of programs (e.g., eval state-
ments in JavaScript) requires on-the-fly static analysis of
programs. They provide a model to define non-interference
that is suitable to progress-sensitivity and they quantify
information leaks due to termination [6].

Hritcu et al. [23] introduces an error-handling mecha-
nism that allows all errors (even those caused by an inform-
ation-flow control violation) to be safely recoverable. They
support dynamic levels. To help prevent leaks through
covert channels, they provide a discretionary access con-
trol mechanism called clearance that allows them to put
an upper bound on the pc. Contrarily to our approach,
the detection (and prevention) of leaks through progress
channels is not done automatically.

Askarov et al. [24] introduce a hybrid monitoring frame-
work capable of handling concurrent programs. They il-
lustrate their approach on a simple imperative language
similar to ours, but it does not support channel variables.
In their framework, each thread is guarded by its own lo-
cal monitor (progress- and flow-sensitive). There is also a
single global monitor that synchronizes the threads. Like
us, they make use of an oracle to approximate the termi-
nation behaviour of branches. This oracle is called upon
at runtime (making it a kind of on-the-fly static analysis),
whereas ours is called only statically. The main differ-
ence between their approach and ours, exluding the con-
currency of course, is the fact that our monitor is inlined
whereas theirs is not.

8. Conclusion

We have presented a hybrid information flow enforce-
ment mechanism, which detects and prevents leaks that
may occur through the data-flow or the progress of a pro-
gram. It uses information inferred during a phase of static
analysis to instrument the program; this helps to reduce
the number of false positives during the execution. The
instrumented program uses level variables, a simple yet
powerful way, to perform its dynamic analysis. This in-
strumented code can then be partially evaluated in order
to reduce the amount of added commands.

Our main contributions are the following.
(a) We present an extended version of the hybrid mon-

itor first presented in our previous article [7]. It is capa-
ble of enforcing flow- and progress-sensitive information
security on general lattices. It is more precise and intro-
duces less overhead than currently available solutions (e.g.,
[12, 14]) for two reasons: it makes use of a static termina-
tion oracle and does not approximate the level of a variable
at the join of a conditional. Since our monitor is inlined,
it can be easily optimized using classical partial evaluation
techniques, [10].
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(b) We prove the soundness of our inlined monitor and
that the semantics of the original program is preserved, as
long as it is secure.

(c) We show that, thanks to the use of sets of levels, it
is possible to distinguish programs that definitely contain
leaks of information from programs that may leak infor-
mation.

(d) We present two ideas to increase the precision of
the static analysis and the permissiveness of the dynamic
analysis: propagating constraints on the set of possible se-
curity levels and using conditional updates. We chose not
to use them in this work in order to increase readability.

Future work includes extensions to concurrency, de-
classification and information leakage due to timing. We
would like to scale up the approach to deal with real world
languages and to test it on elaborate programs. The use of
abstract interpretation, [28], to enhance the static analysis
is also to be considered in future work.
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Appendix A. Examples

In order to simplify the examples, we assume that the
variables lVal, mVal, hVal and channels lChan, mChan, hChan
already exist, have random values and have the suggested
security levels. We also assume that all other level vari-
ables have been initialized to L. Boolean values are repre-
sented as integer where 0 means false and any other integer
means true.

Guarded send
The following example illustrates a situation where the

guarded send is used to prevent a possible leak of informa-
tion.

i f mVal > 0 then
c := mChan

else
c := hChan

end;
send hVal to c; (*may leak information *)

Here is its instrumentation :

(*if*)
_oldpc1 := _pc;
i f lVal > 0 then

_pc := _pc t lValval t lValctx t L;

(* assign *)
(c, cval, cctx) := (lChan, lChanval, lChanctx t _pc);

(c, cctx) := (c, cctx t _pc); (* update *)
else

_pc := _pc t lValval t lValctx t L;

(* assign *)
(c, cval, cctx) := (hChan, hChanval, hChanctx t _pc);

(c, cctx) := (c, cctx t _pc); (* update *)
end
_pc := _oldpc1;

(* guarded send*)
i f _hc t _pc t hValval t hValctx t cctx v cval then

(send hVal to c)
else f a i l end;
_hc := _pc t _hc t hValctx t cctx;

Divergence
Commands after a loop that always diverges are ig-

nored. Hence, the following program is statically safe.

while 1 do
skip

end;
send hVal to lChan

Even if it is statically safe, it is instrumented :

(*while *)
_oldpc1 := _pc;
while 1 do

_pc := _pc t L t L;
(*skip*)
skip;

end;
_pc := _pc t L t L;
_pc := _oldpc1

After partial evaluation, it results in the following pro-
gram:

while 1 do
skip

end

Notice that because the code is statically safe, the partial
evaluation is able to get rid of the instructions added by
the instrumentation algorithm. This is because, if the code
is statically safe, then the conditions of the guarded send
commands are all true. If guarded send commands are not
needed, then level variables are also not needed.

Appendix B. Proofs

We prove that the type system of Figure 2 generates
non-interferent programs (i.e., we prove its soundness).

Theorem 1 (Soundness of enforcement) If a program p is
well typed according to the type system of Figure 2, then
the generated program [[p]] satisfies progress sensitive non-
interference.

The theorem is a consequence of the following results.

Lemma 3 If two memories are `-equivalent, then they
agree on every expressions involving level variables that
were generated by the instrumentation and whose value is
v `; these expressions include _pc,_hc, eval, ectx, etc.

Sketch. The proof is by induction. The idea is to show
that all such expressions either only use level variables of
the form xctx which are v `, on which `-equivalent memo-
ries agree by definition, or that whenever these expressions
use some xval, then they protect this potentially dangerous
variable by xctx. The program context, _pc, is modified
in the conditional and the loop, where the supremum is
taken from the level of the condition.

Notation If Γ(x) = σ`′x , we write Γctx(x) to mean `′x. If
Γ(x) = (int`x chan)`′x or (int`x)`′x , then we write Γval(x)
to mean `x.

The following lemma states that security types of vari-
ables calculated by the typing system of Figure 2 include
all possible runtime values.
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Lemma 4 For any execution starting with a complete mem-
ory, if the runtime memory is m when an instrumented
command [[cmd ]] is executed, and m′ is the memory after
the execution, assuming the typing generated by Figure 2
is

Γ, pc, hc ` cmd : t, hc′,Γ′, [[cmd ]],
we have

(1) m(_pc) ∈ pc and m(_pc) = m′(_pc)

and the following invariants in the program execution

(2) m(_hc) ∈ hc

(3) m(xval) ∈ Γval(x)

(4) m(xctx) ∈ Γctx(x)

Proof. The proof is by structural induction.
Base Cases:
Initially, we have pc = hc = {L}, m(_pc) = m(_hc) = L,
similarly for xval and xctx, so the conditions are true at the
initial state.

Case [[skip]] is trivial.

Case [[x := e]] = (x, xval, xctx) := (e, eval, ectx t_pc)
Since the execution of this code does not modify _pc or
_hc, we have (1) and (2).

For every variable tval in expression eval, we have that
m(tval) ∈ Γval(t). Similarly, for every variable tctx in ex-
pression ectx, we have that m(tctx) ∈ Γctx(t). Hence, by
the definition of the supremum on sets (Definition 3) and
(S-Op), we have (3) (i.e.,m′(xval) ∈ Γ′val(x)). We also have
(4) due to the updated environment returned (S-Assign).

Case [[send x to c]]
Subcase [[send x to c]] = send x to c
Trivial since no variable type is modified.

Subcase [[send x to c]] =

i f _pc t _hc t xval t xctx t cctx v cval
then (send x to c)
else f a i l
end;
_hc := _pc t _hc t xctx t cctx;

Initially we have thatm(_pc) ∈ pc,m(_hc) ∈ hc,m(xctx) ∈
Γctx(x) andm(cctx) ∈ Γctx(c). Only _hc is modified by this
command, hence we have (1), (3) and (4). We also have
(2) by the supremum on sets and the hc′ returned by (S-
GSend).

Induction Cases:
Case [[cmd1; cmd2]]
We can use induction on [[cmd1]], with the following hy-
pothesis:

• Γ, pc, hc ` cmd1 : t1, hc1,Γ1, [[cmd1]].

Induction hypothesis gives us that m′′ (the memory after
executing [[cmd1]]) and Γ1 satisfy (1)-(4). If t1 = D then
[[cmd1; cmd2]] is simply [[cmd1]], and we are done since all
executions diverge. If t1 6= D, then we have for [[cmd2]]
that:

• Γ1, pc, h1 ` cmd2 : t2, h2,Γ2, [[cmd2]]

Since the same program context as for cmd1 is fed to the
typing rule, then by the induction hypothesis and the fact
that m′′ and Γ1 satisfy (1)-(4), we have the result for m′
and Γ2.

Case [[if e then cmd1 else cmd2 end]] =

_oldpcν := _pc;
i f e then
_pc:=_pc t eval t ectx;
[[cmd1]];
update(mv2)
else

_pc := _pc t eval t ectx;
[[cmd2]];
update(mv1)
end;
_pc := _oldpc

For (1) we observe that _pc has the same value before
and after the instrumented code. Moreover, before cmd i,
i = 1, 2, the value of _pc is in pc′, the context used to
type these commands. For (3), by induction, we have that
the invariants are true after the execution of [[cmd1]] or
[[cmd2]]. Hence we have (3). The update function in each
branch inserts commands that, for every modified variable
x, updates its xctx with _pc. This corresponds to what
is done in the supremum of environments (Definition 4),
so we have (4). Finally, since the update function updates
the _hc with _pc when the termination behavior of the
two branches can differ, and that the _hc is updated by
update if one of the branch contains a guarded send, we
have (2) as this corresponds to the union done in (S-If).

Case [[while e do cmd end]]
_oldpcν := _pc;
while e do
_pc := _pc t eval t ectx;
[[cmd ]];

end;
_pc := _pc t eval t ectx;
update(mv);
_pc := _oldpc

The case is similar to the conditional. Variable _pc is
updated at the beginning of each iteration, it belongs to
pc t `e t `′e, as wanted for the induction step involving
[[cmd ]], and we get (1), as pc′ contains all the possible
values of _pc when [[cmd ]] is executed. By induction, we
have that the invariants are true after executing [[cmd ]].
Hence we have (3). We also have (2) and (4) using the
same arguments as in the conditional.

The following proposition shows that any step of two
executions performed from `-equivalent memories results
in `-equivalent outputs. Theorem 1 follows as a corollary
from it and from the next lemma.
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Proposition 5 Let mi, i = 1, 2 be two `-equivalent com-
plete memories, oi be a trace and [[cmd ]] be a command
generated by Figure 2, that is

Γ, pc, hc ` cmd : t, h,Γ′, [[cmd ]].

Then if both [[cmd ]],mi terminate, that is, we have max-
imal executions 〈[[cmd ]],mi, oi〉 −→∗ 〈stop,m′i, o′i〉, then
the following statements are invariants:

(a) the memories are `-equivalent (Def 5)

(b) `-projections of observations are equal

Proof. The proof is by structural induction.
Base Cases:
Initially, we have mi, i = 1, 2 two `-equivalent memories
where the level variables have been initialized, so (a) and
(b) are straightforward.

Case [[skip]] is trivial.

Case [[x := e]] = (x, xval, xctx) := (e, eval, ectx t_pc)
We have to prove (a), as (b) is trivial since this command
does not modify the output traces. For `-equivalence,
since _pc, _hc and the contents of channels are not mod-
ified, we obtain conditions (1) and (3) of Definition 5.
For condition (2): since m1 and m2 are `-equivalent, if
m′1(x, xval, xctx) 6= m′2(x, xval, xctx), then by Lemma 3 it
implies that m′i(xctx) = mi(_pc t ectx) 6v `. Meaning
that there is at least one variable tctx in ectx such that
mi(tctx) 6v `, or that _pc 6v `. Hence, m′1 and m′2 are still
`-equivalent. If m′1(x, xval, xctx) = m′2(x, xval, xctx), then
m′1 and m′2 are `-equivalent.

Case [[send x to c]]
Subcase [[send x to c]] = send x to c
By the typing rule, we have

pc t hc t `x t `′x t `′c vs `c

using the property of supremum, combining with Lemma 4
and converting the notation, we obtain

mi(_pc) ∈ pc vs Γval(c)

mi(_hc) ∈ hc vs Γval(c)

mi(xval) ∈ Γval(x) vs Γval(c)

mi(xctx) ∈ Γctx(x) vs Γval(c)

mi(cctx) ∈ Γctx(c) vs Γval(c)

By the definition of vs, this implies mi(_pct_hctxval t
xctx t cctx) v mi(cval), which means that the sending of x
on c is safe. Hence we obtain (a) and (b) by `-equivalence
of the memories.

Subcase [[send x to c]] =

i f _pc t _hc t xval t xctx t cctx v cval
then (send x to c)
else f a i l

end;
_hc := _pc t _hc t xctx t cctx;

We have to prove (a) and (b). For (a), we only have to
prove conditions (1) and (3) as only the value of _hc and
the content of the channel may change.

If mi(_pc t _hc t xctx t cctx) v ` for one memory i ∈
{1, 2} then, by `-equivalence, it is also the case for the
other memory and we get (1). It also implies that the two
memory agree on xval and cval as they are `-equivalent.
This means that they either both fail, in which case there
is nothing more to prove, or the send command is executed
in both. If it is executed, then mi(_pct_hctxvaltxctxt
cctx) v mi(cval), for i = 1, 2, and by `-equivalence again,
oi �` = o′i �` in both executions and (b) is true, as well as
(3).

Ifm′i(_hc) = mi(_pct_hctxctxtcctx) 6v ` for i = 1, 2,
then we get (1) and we have that the send command could
succeed in m1 and fail in m2. But since mi(_pc t _hc t
xctxtcctx) 6v `, we know that it cannot succeed on a channel
whose level is v ` and we get (b) and (3).

Induction Cases:
Case [[cmd1; cmd2]]
The hypothesis gives that m1 and m2 satisfy (a) and (b).
Then we can use induction on [[cmd1]], with the following
hypotheses:

• Γ, pc, hc ` cmd1 : t1, h1,Γ1, [[cmd1]].

• 〈[[cmd1]],mi, oi〉 −→∗ 〈stop,m′′i , o′′i 〉

Induction hypothesis gives us that m′′1 and m′′2 satisfy (a)
and (b). We have for [[cmd2]] that:

• Γ1, pc, h1 ` cmd2 : t2, h2,Γ2, [[cmd2]]

• 〈[[cmd2]],m′′i , o
′′
i 〉 −→∗ 〈stop,m′i, o′i〉

By the induction hypothesis and the fact that m′′1 and m′′2
satisfy (a) and (b), we obtain that m′1 and m′2 satisfy (a)
and (b).

Case [[if e then cmd1 else cmd2 end]] =

_oldpcν := _pc;
i f e then
_pc := _pc t eval t ectx;
[[cmd1]];
update(mv2)
else

_pc := _pc t eval t ectx;
[[cmd2]];
update(mv1)
end;
_pc := _oldpc

Assume that m1 and m2 satisfy (a) and that o1 �` = o2 �`.
If mi(eval t ectx) = tt∈Var(e)mi(tval t tctx) v `, i = 1, 2
(symmetry is given by `-equivalence), we have the result
by induction since both memories take the same branch,
say i.
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Now assume thatmi(evaltectx) 6v `, i = 1, 2. Ifm1(e) =
m2(e) we are in the same situation as above. So assume
w.l.o.g. that m1(e) is true but m2(e) is false; hence under
memory mi, code [[cmd i]] will be executed.

If both commands terminate, that is:

• 〈[[cmd1]],m1, o1〉 −→∗ 〈stop,m′1, o′1〉

• 〈[[cmd2]],m2, o2〉 −→∗ 〈stop,m′2, o′2〉

Then we know, by Lemma 6(c), that

o′1 �` = o1 �` = o2 �` = o′2 �`.

because before executing cmd i, variable _pc is updated
with the value of mi(eval t ectx) which is 6v `. Hence, the
execution of [[cmdi]] will produce no output on channels of
level v `. Hence, (b) is proven for the induction step.

This also proves (a) on channels, but we need to prove
it on variables (level and non level).

Let x ∈ V and mv = mv1 ∪ mv2, where mvi the set
of variables that may be modified in cmd i, i = 1, 2. By
definition, variable _hc is also included in this set if the
termination of the branches may differ or if one of them
contains a guarded send. If x 6∈ mv and the mi’s agree
on x, xctx and xval, then the m′i’s also agree on x, xctx and
xval.

If x ∈ mvi, we have that xctx w _pct eval t ectx due to
the commands inserted by the update function. Thus we
have (a).

Case [[while e do cmd end]] =
_oldpcν := _pc;
while e do
_pc := _pc t eval t ectx;
[[cmd ]];

end;
_pc := _pc t eval t ectx;
update(mv);
_pc := _oldpc

As a loop is essentially a (possibly infinite) sequence of if ,
the case is similar to the conditional. Assume that m1 and
m2 satisfy (a) and (b). Ifmi(evaltectx) = tt∈Var(e)mi(tvalt
tctx) 6v `, then we know that the execution of [[cmd]] will
produce no output on channels of level v ` since variable
_pc is updated before entering the loop, and that every
variable that is or could have been modified by [[cmd]] will
have a tctx that is 6v ` due to the update function. Hence,
we have (a) and (b).

If instead we have that mi(evaltectx) v `, then we have
the result by induction since both memories will always
take the same branch.

Lemma 6 With the premises of the previous theorem, if
one step of [[cmd ]] fails or diverges for one memory then
it also fails or diverges for the other or no more output
on channels of level ` or lower will be performed on that
execution. More precisely, for i = {1, 2}

(a) mi(_hc) v m′i(_hc)

(b) if only one execution fails or diverges, say m1, then
o2 �` = o′2 �` and m′2(_hc) 6v `.

(c) if mi(_pc) 6v ` or mi(_hc) 6v ` then oi �` = o′i �`

(d) if both executions fail or both diverge, then the `-
projections of observations are equal

Proof. (a) is straightforward since _hc is always included
in the right-hand side when updating _hc.

(b) is proven by induction, following the lines of Propo-
sition 5. The interesting cases are the guarded send sub-
case and the inductive cases.

Case [[send x to c]]
Let’s assume that the send command is transformed
into a guarded send. The only case where only one
execution fails, say m1, is one where m′2(_hc) 6v `,
and where no observation is made on a channel of
level ` or lower, as wanted.

Case [[cmd1; cmd2]]
Let m′′i and o′′i be the memories and output traces
after executing cmd1. Letm′i and o′i be the memories
and output traces after executing cmd1; cmd2. If one
execution fails or diverges, say m1 on cmd1, then
by induction, m′′2(_hc) 6v `, and by (c), we obtain
o2 �` = o′′2 �`. By (a) and (c) and induction, we then
get o2 �` = o′2 �`, as wanted. By (a), and (c) again,
we also obtain m′2(_hc) 6v `. If m1 fails or diverges
on cmd2 instead, the argument is similar.

Case [[if e then cmd1 else cmd2 end]]
There are two situations in which only one execution,
say m1, can fail: (1) only one execution executes
a guarded send or (2) they both execute the same
guarded send but the result is different. In case (1),
we have that mi(_pc) 6v ` (a consequence of Propo-
sition 5 and Lemma 3), and that at least one of the
if ’s branch contains a guarded send, which is always
followed by an update to variable _hc. Since one of
the branch modifies variable _hc, it also means that
the update function updates _hc to _pc, which is
6v `. Hence, we have (b) in this case. In case (2), the
only way that the result of a guarded send can be
different is if mi(_pc t _hc t xctx t cctx) 6v `, where
x is the variable sent and c the channel on which the
send occurs. In this case, the update to _hc that im-
mediately follows the guarded send will ensure that
m2(_hc) 6v `. Hence we also have (b) in this case.
Similarly, for only only one execution to diverge, two
things must be true: (1) mi(_pc) 6v `, and (2) the
termination type of the if command is M . Since
the termination type is M , we have that the update
function inserted after the conditional updates the
_hc to _pc, which is 6v `. Hence, we also have (b)
in this case.
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Case [[while e do cmd end]]
The argument is similar to the if command.

For (c), there are two cases where there are observa-
tions, the send case and the guarded send case. For the
latter, the condition is taken care of by the guard. For
the former, if mi(_pc) 6v ` or mi(_hc) 6v ` then, by
Lemma 4 (1) and (2), one of the sets pc or hc contains
a security level `′ 6v `. By the typing rule, this implies
that `′ vs Γval(c). By definition of vs, all elements of
Γval(c) are greater than or equal to `′ and hence, again
by Lemma 4 (3), `′ vs mi(cval) and ` 6vs mi(cval), thus
oi �` = o′i �`.

Finally, for (d), we have three cases: both executions
fail, both executions diverge andmi(_pctevaltectx) v ` or
both executions diverge andmi(_pctevaltectx) 6v `, where
e is the guard expression of the loop that diverges. If both
executions fail, then there will be no more outputs and
so the `-projections remain equivalent. If both executions
diverge and mi(_pct evalt ectx) v `, then by Lemma 3 we
have that the `-projections of observations are equal. If
both executions diverge and mi(_pctevaltectx) 6v `, then
the update to the _pc inside the body of the loop ensures
that mi(_pc) 6v ` before executing cmd , and so that there
will be no more outputs on channels of level lower or equal
to `.

Lemma 7 (Fixed-point) The fixed-point computed by typ-
ing rules (S-Loop1) and (S-Loop2) always converges to
a value.

Proof. First let’s observe that the pc′ computed by S-
Loop always reaches a fixed-point due to the fact that
it is a set of levels on which we add elements at each it-
eration; elements are never removed. Hence, in the worst
case, pc′ will be equal to L (since L is a finite set).

Let x ∈ dom(Γ).
We have that Γval(x) ⊆ (Γtpc′ Γ′)val(x) by Definition 4,

as it states that (Γtpc′ Γ′)val(x) = Γval(x)∪Γ′val(x). Hence,
Γval(x) ultimately reaches a fixed point since L is finite.

Depending on the type associated to pc′, we either have
that Γctx(x) ⊆ (Γ tpc′ Γ′)ctx(x) or that the elements of
Γctx(x) are replaced by levels that are greater than them,
by Definition 4 and Definition 3. Since pc′ reaches a fixed
point, the subsequent modifications of Γctx(x) amounts to
a union operation. Hence, the typing of Γctx(x) reaches a
fixed point eventually as the lattice L is finite.

Theorem 2 (Semantics preservation.) Let p be a pro-
gram, m a memory, and o an output trace. Then

〈[[p]],m, ε〉 ↓ o⇒ 〈p, m̂, ε〉 ↓ o
(〈p, m̂, ε〉 ↓ o ∧ 〈[[p]],m, ε〉 ↓ o′)⇒ o � o′ ∨ o′ � o

where o′ � o means o′ is a prefix of o.

Note that m̂ is a memory for the source language, and
hence it is of type : V ] C → Z ] C whereas m can, in
addition, map variables to levels.

Sketch. By structural induction. The program generated
by our instrumentation contains the same commands as
the original program, in the same order. The only differ-
ence being the additional assignments on level variables
and checks. For this reason, the only non-trivial case is
the send command, since it modifies the output trace, or
halts the program. Hence assume that cmd = send x to c.
There are two cases: (1) [[cmd ]] = cmd and (2) [[cmd ]] =
if _pct_hctxval txctx t cctx vs cval then (sendx1 tox2)
else fail end;_hc := _pc t_hc t xctx t cctx.

In the first case, the claim is trivial. In the second case,
the send is guarded by a condition. If this condition is
true, the sending will happen and the output trace will be
updated with o::(m(x1),m(x2)), as would have been done
by cmd . Otherwise, the program [[cmd ]] will be stopped,
and hence, no more output will happen, although cmd
could produce other outputs.
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